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Chapter 1

Introduction

1.1 Machine Learning

Machine learning studies how to automatically make nearly accurate predictions based on past examples.

It considers a set of input data, known as the training set and then tries to predict properties of unknown

data based on the inferences made from the training set. The general work-flow of Machine Learning

algorithms is given in Fig. 1.1

Figure 1.1: ML Process

Machine learning algorithms are further classified into: Supervised and Unsupervised algorithms. In

supervised algorithms, every data in the training set has an output value associated with it. A model is

prepared through a training process in which it is required to make predictions and is corrected when those

predictions are wrong. The training process continues until the model achieves a desired level of accuracy

on the training data. If the nature of output is categorical, then it is known as classification, whereas if the

output is continuous, it is known as regression. Some examples of regression and classification are as

given:

• Classification

– Handwritten digit recognition: Identify a handwritten digit correctly. Here, the digits are the

classes. This is an examples of multi-class classification
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– Spam Filtering: Given a email, find if it is spam or not. This is a binary classification. Naive

Bayes is most commonly used for spam filtering

– Credit card fraud detection: Given credit card transaction details, find if it is fraudulent or not

– Face detection: Given a image, identify if it contains a face or not

– Cancer Detection: Given the description of tumor, find if it is malignant or benign

• Regression

– Stock market prediction: Determining the future value of stock based on the past transactions

– Real estate prediction: Predicting the value of a real estate based on the fluctuations in the

market

On the other hand, in unsupervised learning, the data is not labeled and does not have a known result.

A model is prepared by deducing structures present in the input data. This may be to extract general rules.

It may be through a mathematical process to systematically reduce redundancy, or it may be to organize

data by similarity. The most common example of unsupervised learning is image segmentation. Fig 1.2

diagrammatically represents supervised and unsupervised learning.

Figure 1.2: Supervised and Unsupervised Learning

This library explores classification algorithms in depth. In particular, it covers ensemble algorithms,

which is a type of classification.

1.2 Classification

Classification is the problem of identifying to which class a new observation belongs, on the basis of

training a data-set containing observations whose category membership is known. There are various

classification algorithms, some of them are:

1.2.1 KNN

This is the simplest form of classification. It is based on the assumption that if the output of an observation

is equal to that of its nearest neighbour. In K-NN, the output is a majority vote of the outputs of the K-
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nearest neighbors (samples from the training data) of the observations. K-NN does not use any kind of

learning, rather it is a simple inference made from the training data. Here, K is a hyper-parameter to be

tuned.

1.2.2 Naive Bayes

Naive Bayes classifier uses the Bayesian assumption that the probability of each attribute belonging to a

given class value is independent of all other attributes. Despite being a stringent assumption, it works

effectively for most applications.

Given a class label y and an n-dimensional observation X = (x1, x2, ..., xn), Bayes theorem states

that:

P (y|x1, x2, ...xn) =
P (y)P (x1, x2, . . . ., xn|y)

P (x1, x2, . . . xn)

Using the naive assumption, we get

P (xi|y, x1...xi−1, xi+1, ....xn) = P (xi|y)

Thus,

P (y|x1, x2, ...xn) =
P (y)P (x1|y)P (x2|y)....P (xn|y)

P (x1, x2, . . . xn)

Since P (x1, x2, . . . xn) is constant,

P (y|x1, x2, ...xn) ∝ P (y)P (x1|y)P (x2|y)....P (xn|y)

The output label y is the one which maximizes the RHS probability.

Most Naive Bayes assume a Gaussian Distribution as the underlying structure. With this assumption,

we have

P (xi|y) = N(µ,Σ)

Here, µ and Σ are the parameters

1.2.3 Perceptron

Perceptron is a type of linear classifier (as shown in Fig 1.3). Linear classifiers find a linear decision

boundary which tries to separate the data into two classes perfectly. It has to be noted that linear classifiers

work perfectly only if the data is linearly separable.

Perceptron algorithm assumes that y = +1, -1. It takes the learning rate ‘neta’ as a parameter and

updates the coefficient weights in batch-wise if any prediction is wrong. The learning rate has to be tuned

such that oscillation is avoided but at the same time, the solution is reached fast. The final prediction is

made by computing x*weights. If x*weights > 0, the output is labeled 1, else -1

1.2.4 SVM

SVM are classifiers that tries to find the best decision boundary for a given data. The best decision

boundary is a boundary which is as wide as possible from the classes. The SVM can have different shapes

of boundaries. The shape of the boundary is determined by the kernel. In this library, a linear kernel

is used. A linear kernel allows a binary classification. SVM is superior over Perceptron as it allows

generalization to as much extent as possible
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Figure 1.3: Linear Classifiers

1.2.5 Logistic Regression

Logistic Regression is a linear classifier which uses a sigmoid function as the cost function. The

functioning of Logistic Regression is just the same as linear regression. The optimum value of the weights

is found using gradient descent over the negative of the error.

1.3 Ensemble Methods

Ensemble methods are learning algorithms that classifies using a combination of a set of weak classifiers.

Voting, Boosting and Bagging are few types of ensemble methods.

1.3.1 Voting

The most straightforward approach for building an ensemble is training different classifiers. Let us

consider that you are given a data set X for classification. Instead of learning a single classifier on this data

set, we learn multiple classifiers. For instance, we might train a SVM, perceptron, KNN, decision tree,

Neural networks on this data set. During test time, the prediction is done by voting. On a test example, you

compute the predictions from all the classifiers. A majority voting is taken amongst all these predictions

and is given as the output label. The major advantage of this type of classification is that it is unlikely that

many classifiers will do the same mistake.

1.3.2 Bagging

Instead of using different classifiers, bagging trains the same type of classifier on different overlapping

subsets of data. It is usually applied on decision trees/ stumps. The basic idea behind bagging is that

the bootstrapped datasets will be similar, but not too similar. Hence, it reduces variance, thereby, not

overfitting any data.

1.3.3 Boosting

Boosting is the process of taking a bag of weak classifiers and collectively combining them to build a

strong classifier. It is more of a framework rather than an algorithm. The most famous boosting algorithm
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is AdaBoost. It randomly adapts itself to any data we give. It uses a sequence of different weak learners

and trains them on modified versions of data. The predictions from all of them are then combined through

a weighted majority vote to produce the final prediction.
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Chapter 3

Getting Familiarized with CliqueLib

3.1 Importing the Library and Using it

You must first include the corresponding library in your code. The following are the algorithms provided

by CliqueLib:

KNN #include “KNN.h”

Logistic Regression #include “logistic_regression.h”

SVM #include “SVM.h”

Naive Bayes #include “naive_bayes.h”

Perceptron #include “Perceptron.h”

AdaBoost #include “AdaBoost.h”

Bagging Classifier #include “BaggingClassifier.h”

Voting Classifier #include “VotingClassifier.h”

CliqueLib uses Armadillo for its operations. Armadillo is a high quality optimized linear algebra

library in C++ which provides high-end matrix operations in C++ analogous to that in MATLAB. Hence,

in order to execute the code you must include the arma namespace. (Note that if you don’t use it, then

you will have to append arma:: to every component of the Armadillo library used in the program). This

namespace can be included as follows:

u s i n g namespace arma ;

3.2 Loading the Dataset

CliqueLib essentially works on CSV files. Hence, you need to process CSV files. In order to load and use

Dataset, you must include the preprocessing header

# i n c l u d e " P r e p r o c e s s i n g . h "

The preprocessing component of Cliquelib provides functions for reading CSV files and spliting the

data into test and training set.
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3.2.1 Reading csv file

Reads the CSV file and converts it into the required format

vo id r e a d _ c s v ( f i l e , X, Y, t i t l e , s e p a r a t e _ e x , comment )

Parameters:

• file - CSV file name in String. The last column of the CSV file must be the labels

• X - The Armadillo Matrix in which you need to store the data

• Y - The Armadillo Column Vector in which you need to store the labels

• title - The Boolean Variable which gives the information if the first row of CSV file is a header or

not. The default value of Title is false

• separate_ex - It is a character which denotes the delimiter for the CSV file. It can take the values

of ‘,’(comma), ‘;’(semi-colon), ‘ ’(space) and ‘’(newline). The default value of separate_ex is

‘,’(comma)

• comment - The default value of this character is ’’. It indicates that the remainder of line following

the character should not be parsed

CliqueLib by default uses few test CSV files in the samples_csv folder. These CSV files can be used

for testing. For example:

r e a d _ c s v ( " s a m p l e s _ c s v / Cancer . c sv " , X, Y, t r u e , ’ , ’ , ’ # ’ ) ;

3.2.2 Spliting the data into training and testing set

Splits the entire data into training set and test set based on the training set size provided by the user

vo id s p l i t _ t r a i n _ t e s t (X, Y, da t a , t r a i n P r o p o r t i o n )

Parameters:

• X: This Armadillo matrix is the entire data

• Y: This is the Armadillo column vector denoting the corresponding labels

• data: This is of type Dataset. Dataset consists of the training set (Xtrain, Ytrain) and test set (Xtest,

Ytest). These four members are updated by the function

• trainProportion: This double quantity gives the size of the split. It can take any value between 0 to 1
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3.3 Defining Classifier and Initializing the parameters

1. KNN: The KNN classifier constructor takes K as a parameter. The default value of K is 1. The

object is created as follows:

KNN k n n _ c l f r ( 1 ) ;

2. Logistic Regression: The Logistic Regression constructor takes the learning rate as a parameter.

The default value of the learning rate, alpha is 0.01.

L o g i s t i c l o g i s t i c _ c l f r ( 0 . 0 1 ) ;

3. SVM CliqueLib implements a linear SVM using Pegasos Algorithm. Its constructor takes the decay

rate, C as the parameter. The default value of C is 0.1

SVM s v m _ c l f r ( 0 . 1 ) ;

4. Perceptron: The Perceptron has a learning rate as a parameter. The parameter has a default value of

0.01

P e r c e p t r o n p e r c e p t r o n _ c l f r ( 0 . 0 1 ) ;

5. AdaBoost: The AdaBoost algorithm in CliqueLib uses Decision Stumps as the base classifiers.

These base classifiers do not require any external parameter.

AdaBoost a d a b o o s t _ c l f r ;

6. Bagging Classifier: As discussed earlier, bagging uses the sample classifier on multiple samples of

overlapping data. It takes the number of classifiers (n_estimators) and the maximum number of

samples as parameters (max_samples) respectively. Bagging classifiers are generic types which can

be extended to any type of base classifiers. For having a bag of SVM classifiers, you must add the

following:

B a g g i n g C l a s s i f i e r <SVM> b a g g i n g _ c l f r ( 2 , 1 0 0 0 ) ;

7. Voting Classifier: Voting classifier has a collection of Base classifiers as a member. It does not

require any parameters in the constructor

V o t i n g C l a s s i f i e r v o t i n g _ c l f r ;
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3.4 Training the Dataset

By default all the classifiers in CliqueLib have the same structure for training a dataset.

vo id t r a i n (X, Y, epoch )

Parameters:

• X - The Armadillo matrix X which represents the data

• Y - The Armadillo column vector Y which represents the labels for the corresponding data. Note

that the labels are always either 1 or -1. This is because CliqueLib works in depth for binary

classification only

• epoch - Epoch represents the number of iterations taken to get the weight vector. Algorithms like

KNN does not require epoch. Hence, the value can be given as 1, which is considered as the default

value

3.5 Predicting the labels of the test set

Analogous to the training function, the structure for the predict function is the same for all classifiers

vo id p r e d i c t (X, Y)

Parameters:

• X - The Armadillo matrix X which represents the test data

• Y - The final labels after predicted are stored in this Armadillo column vector. Note again that the

labels are either 1 or -1. You simply need to pass an empty column vector while calling the function
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Chapter 4

Examples on Real Datasets

In this section, the working of CliqueLib’s linear and boosting classifiers are given for large datasets.

4.1 SVM and Perceptron on Linear Dataset

# i n c l u d e < i o s t r e a m >

# i n c l u d e < a r m a d i l l o >

# i n c l u d e <cmath >

# i n c l u d e < u t i l i t y >

# i n c l u d e " p r e p r o c e s s i n g _ f u n c t i o n s . h "

# i n c l u d e " D a t a s e t . h "

# i n c l u d e "SVM. h "

# i n c l u d e " P e r c e p t r o n . h "

u s i n g namespace arma ;

do ub l e g e t A c c u r a c y ( c o l v e c& a , c o l v e c& b ) {

r e t u r n d ou b l e ( accu ( a==b ) ) / s i z e ( a , 0 ) ;

}

i n t main ( )

{

mat X;

c o l v e c Y;

r e a d _ c s v ( " l i n e a r . c sv " , X, Y, t r u e , ’ , ’ , ’ # ’ ) ;

D a t a s e t d a t a ;

s p l i t _ t r a i n _ t e s t (X, Y, da t a , 0 . 8 ) ;

c o u t << "### Running SVM ###" << e n d l ;
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SVM s v m _ c l f r ( 0 . 1 ) ;

s v m _ c l f r . t r a i n ( d a t a . X t r a i n , d a t a . Y t r a i n , 1 0 0 0 ) ;

c o l v e c preds_svm ;

s v m _ c l f r . p r e d i c t ( d a t a . X t e s t , preds_svm ) ;

a u t o acc_svm = g e t A c c u r a c y ( d a t a . Y t e s t , preds_svm ) ;

c o u t << "SVM acc : " << acc_svm << e n d l ;

c o u t << "### Running P e r c e p t r o n ###" << e n d l ;

P e r c e p t r o n p c p t r _ c l f r ;

p c p t r _ c l f r . t r a i n ( d a t a . X t r a i n , d a t a . Y t r a i n , 1 0 0 0 ) ;

c o l v e c p r e d s _ p c p t r ;

p c p t r _ c l f r . p r e d i c t ( d a t a . X t e s t , p r e d s _ p c p t r ) ;

a u t o a c c _ p c p t r = g e t A c c u r a c y ( d a t a . Y t e s t , p r e d s _ p c p t r ) ;

c o u t << " P e r c e p t r o n acc : " << a c c _ p c p t r << e n d l ;

r e t u r n 0 ;

}

As it was a linearly separable dataset, the accuracy of both SVM and Perceptron was 100

4.2 AdaBoost for Face Detection

In this example, 60% of the dataset is reserved as the training data and the remaining as the test. Adaboost

was used with five decision stumps. For a training size of 600, the accuracy obtained was 99.5%.

# i n c l u d e < a r m a d i l l o >

# i n c l u d e < i o s t r e a m >

# i n c l u d e < v e c t o r >

# i n c l u d e < c a s s e r t >

# i n c l u d e <cmath >

# i n c l u d e < u t i l i t y >

# i n c l u d e " p r e p r o c e s s i n g _ f u n c t i o n s . h "

# i n c l u d e " D a t a s e t . h "

# i n c l u d e " AdaBoost . h "

u s i n g namespace arma ;

do ub l e g e t A c c u r a c y ( c o l v e c& a , c o l v e c& b )

{
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r e t u r n (100 ∗ ( do ub l e ( accu ( a==b ) ) / s i z e ( a , 0 ) ) ) ;

}

/ / use c a s e 1

i n t main ( )

{

mat X;

c o l v e c Y;

r e a d _ c s v ( " f a c e _ d e t e c t i o n . csv " , X, Y, t r u e , ’ , ’ , ’ # ’ ) ;

X = X. rows ( 0 , 9 9 9 ) ;

Y = Y. rows ( 0 , 9 9 9 ) ;

D a t a s e t d a t a ;

s p l i t _ t r a i n _ t e s t (X, Y, da t a , 0 . 6 ) ;

AdaBoost c l f r ;

c l f r . t r a i n ( d a t a . X t r a i n , d a t a . Y t r a i n , 5 ) ;

c o l v e c t r a i n P r e d s ;

c l f r . p r e d i c t ( d a t a . X t r a i n , t r a i n P r e d s ) ;

a u t o acc = g e t A c c u r a c y ( d a t a . Y t r a i n , t r a i n P r e d s ) ;

c o u t << " T r a i n i n g a c c u r a c y : " << acc << "%" << e n d l ;

c o l v e c t e s t P r e d s ;

c l f r . p r e d i c t ( d a t a . X t e s t , t e s t P r e d s ) ;

acc = g e t A c c u r a c y ( d a t a . Y t e s t , t e s t P r e d s ) ;

c o u t << " T e s t i n g a c c u r a c y : " << acc << "%" << e n d l ;

c o u t << " " << e n d l ;

r e t u r n 0 ;

}
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Compiling the Library 
 

The compilation of the library differs based on the user’s needs. If the user needs               
to compile all algorithms, and hence ‘make’ all Makefiles present in the library, then he               
can run the ./compile_cliquelib.sh bash script in the main directory of CliqueLib. If the              
user would like to compile all algorithms and run all test cases, then he should type                
‘make’ in the main folder. The benchmarks can be compiled by running ‘make’ in              
./Benchmarking/KNN or ./Benchmarking/LogisticRegression. Should the user like to run         
the two use cases then he ought to type ‘make’ in either ./UseCases/UseCase1 or              
./UseCases/UseCase2. ​Please note that the executables must be run in the           
corresponding folder where the Makefile is present. 
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Abstract 

 
CliqueLib is a C++ machine learning library implementing ensemble methods.          

Ensemble methods use several machine learning algorithms in order to achieve better            
prediction than could be gained by using any of the constituent algorithms. Hence, the              
library provides implementation for classification algorithms including KNN, logistic         
regression, SVMs, and Perceptron classifiers. These algorithms could be either used as            
standalone algorithms or combined to form an ensemble classifier. C++ libraries like            
MultiBoost and Mlpack provide support for just Adaboost without allowing the usage of             
other classifiers for boosting. Our library aims to provide a spectrum of ensembles for              
the users to choose one that is suitable for their requirements. 
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1. Problem Statement 
 

Machine learning is currently one of the fastest growing technologies. It has a             
tremendous number of applications across a diverse range of domains. Python is            
commonly preferred for Machine Learning applications due to its lesser complexity.           
However, there are compiled languages like C++ which can be much faster than Python              
for intricate Machine Learning problems. As of now, there are libraries which provide             
naive implementations of the Machine Learning suite. However, none of them have a             
good implementation of ensemble classifiers. In fact, none of the existing C++ libraries             
implements a basic set of ensemble methods. Ensemble methods essentially enhance           
the performance of models by strategically combining diverse weak models to solve a             
computationally intelligent problem like Face Recognition. A generic sturdy library for           
ensemble methods in C++ can provide for more reliable results and thus lead to the               
lavish use of CliqueLib in many C++ machine learning applications. CliqueLib’s           
ensemble methods are further unique as they can be easily customized by the user.  
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2. Design 
 

As C++ is a very powerful and complex language, there are numerous choices             
that had to be made in relation to programming design. As CliqueLib ought to be used                
by users in a coherent manner, it is essential that future developers and data scientists               
can get acquainted with the major decisions involved in the library’s design. 
 
2.1. Goals 

 
The goals of CliqueLib can be segmented into four main categories. First, the             

algorithms had to be efficient, which was one of the main reasons for selecting to use                
the Armadillo library. Consequently, the API had to be intuitive also for users that are               
not experts in the field of machine learning or C++. Furthermore, the aim was the quality                
of algorithms rather than quantity. Ultimately, the user would have at hand customizable             
ensemble methods that are unique to CliqueLib. 
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2.2. Benchmarking 
 

As one of the main goals of the library was efficiency, the benchmarking results              
are presented early in the document. The library used the Armadillo C++ linear algebra              
library, a high quality tool aiming for ease of use and efficiency, for implementing              
CliqueLib’s algorithms. The efficiency of CliqueLib’s library implementation was         
confirmed by testing the implementations of the KNN and Logistic regression           
algorithms. In order to obtain a valid comparison, the authors of CliqueLib wrote another              
implementation of the two algorithms that used vector<vector> > instead of Armadillo’s            
matrices. Furthermore, the performance of the algorithms was further compared with           
Java’s WEKA and C++’s Mlpack machine learning libraries. The Armadillo’s          
implementations worked exceptionally well, and hence represent one of the best           
decisions made during the library’s design process.  

 
All comparisons are made using Kaggle’s Cancer Tumor classification dataset having           
31 features (columns) and 569 samples (rows). 
 
 

 KNN Runtime KNN Accuracy Logistic Regression 
Runtime 

Logistic Regression 
Accuracy 

CliqueLib 
(Armadillo) 

26.15 92.93% 6.54 85.84% 

CliqueLib 
(vector<vector<>>) 

201.63 92.90% 17.03 85.84% 

MLpack (C++) 27.74 92.92% 16.20 85.87% 

Weka (Java) 30.00 92.92% NA NA 

Sklearn (Python) 19.99 92.93% 8.00 85.87% 
* All times are in milliseconds 
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The results of the comparisons are displayed below. 
 
KNN 
 

//================================================================ 
// Name        : benchmark_knn.txt 
// Author      : CliqueLib 
// Version     : 
// Copyright   :  
// Description : Results for benchmarking KNN 
//================================================================ 
 
The following measurements were taken by running the benchmarking methods on 
Google Cloud.  
 
The following times are smaller than those presented in the corresponding 
benchmark_knn.cpp file as the author's computer is extremely slow. 
 
The first two tests compared CliqueLib's Armadillo vs. 'vector<vector> >' 
implementations.  
 
As you can see, Armadillo greatly increased the performance of the library. 
 
CliqueLib Armadillo: 
 
Runtime: ​26149​ microseconds 
 
CliqueLib Vectors: 
 
Runtime: ​201631​ microseconds. 
 
Consequently, the performance was compared with Java's Weka machine learning 
library and C++'s Mlpack library. Our Armadillo implementation performed very well 
and even beat Mlpack. 
 
Weka: 
 
Benchmark Weka: KNN 
 
=== Classifier model (full training set) === 
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IB1 instance-based classifier 
using 23 nearest neighbour(s) for classification 
 
Runtime: 0.03 Seconds ~ ​30000​ microseconds 
 
Mlpack: 
 
Runtime: ​27743​ microseconds 
 
Part of Mlpack's output: 
 
[INFO ] Execution parameters: 
[INFO ]   algorithm: dual_tree 
[INFO ]   distances_file: distances_out.csv 
[INFO ]   epsilon: 0 
[INFO ]   help: 0 
[INFO ]   info:  
[INFO ]   input_model_file:  
[INFO ]   k: 23 
[INFO ]   leaf_size: 20 
[INFO ]   naive: 0 
[INFO ]   neighbors_file: neighbors_out.csv 
[INFO ]   output_model_file:  
[INFO ]   query_file:  
[INFO ]   random_basis: 0 
[INFO ]   reference_file: Cancer.csv 
[INFO ]   rho: 0.7 
[INFO ]   seed: 0 
[INFO ]   single_mode: 0 
[INFO ]   tau: 0 
[INFO ]   tree_type: kd 
[INFO ]   true_distances_file:  
[INFO ]   true_neighbors_file:  
[INFO ]   verbose: 1 
[INFO ]   version: 0 
[INFO ] Program timers: 
[INFO ]   computing_neighbors: 0.003940s 
[INFO ]   loading_data: 0.008077s 
[INFO ]   saving_data: 0.014478s 
[INFO ]   total_time: 0.027743s 
[INFO ]   tree_building: 0.000743s 
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Sklearn KNN: 

 
 
 
Logistic Regression 
 

//================================================================ 
// Name : benchmark_logisticregression.txt 
// Author : CliqueLib 
// Version : 
// Copyright   : 
// Description : Results for benchmarking Logistic Regression 
//================================================================ 
 
The following measurements were taken by running the benchmarking methods on 
Google Cloud. 
 
The following times are smaller than those presented in the corresponding 
benchmark_logisticregression.cpp file as the author's computer is extremely slow. 
 
The first two tests compared CliqueLib's Armadillo vs. 'vector<vector> >' 
implementations. 
 
As you can see, Armadillo greatly increased the performance of the library. 
 
CliqueLib Armadillo: 
 
Runtime: ​6541​ microseconds 
 
CliqueLib Vectors: 
 
Runtime: ​17030​ microseconds. 
 
Consequently, the performance was compared with Java's Weka machine learning 
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library and C++'s Mlpack library. Our Armadillo implementation performed very well 
and was on par with Mlpack. 
 
Weka: 
 
Fails 
 
Mlpack: 
 
Runtime:​ 16206 ​ microseconds 
 
Part of Mlpack's output: 
 
[INFO ] Execution parameters: 
[INFO ]   batch_size: 50 
[INFO ]   decision_boundary: 0.5 
[INFO ]   help: 0 
[INFO ]   info: 
[INFO ]   input_model_file: 
[INFO ]   labels_file: 
[INFO ]   lambda: 0 
[INFO ]   max_iterations: 100 
[INFO ]   optimizer: sgd 
[INFO ]   output_file: output.txt 
[INFO ]   output_model_file: model.txt 
[INFO ]   output_probabilities_file: 
[INFO ]   step_size: 0.01 
[INFO ]   test_file: Cancer.csv 
[INFO ]   tolerance: 1e-10 
[INFO ]   training_file: Cancer.csv 
[INFO ]   verbose: 1 
[INFO ]   version: 0 
[INFO ] Program timers: 
[INFO ]   loading_data: 0.015230s 
[INFO ]   logistic_regression_optimization: 0.000266s 
[INFO ]   saving_data: 0.000103s 
[INFO ]   total_time: 0.016206s 
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Sklearn Logistic Regression: 

 
In sum, CliqueLib’s Armadillo algorithm implementations match the performance         

of other well-established libraries. 
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2.3. Concepts 
 

CliqueLib uses concepts to constrain what base classifiers could be used with            
the Bagging meta-estimator. Library defines the concept of a “Classifier” which enforces            
that template argument to Bagging Classifier provide train and predict functions in a             
certain expected format. This makes sure that compilation errors are terse and            
comprehensible when the use attempts to construct a Bagging meta-estimator with an            
improper base classifier. 
 
2.4. SmartPointer 
 

Handles were used to represent ownership wherever possible. shared_ptrs were          
used where pointers were unavoidable, to make sure the library does not leak             
resources.  
 
2.5. Interface 
 

To get data out of functions, the library defines most interfaces to accept             
references to empty containers (in most cases armadillo column vectors arma::colvec           
for labels) and expects the functions to fill them up with relevant data. This approach               
was selected as there were no guarantees of move semantics being implemented for             
armadillo matrices and vectors. Similarly, to pass huge datasets into the function, const             
references were employed. 
 

A Dataset struct is defined to get train and test splits cheaply and tersely out of                
the preprocessing functions.  

 
2.6. Armadillo 
 

Armadillo is a high quality linear algebra library for the C++ language. The library              
aims for a balance between efficiency and ease of use. The library has syntax similar to                
Matlab and is particularly suitable for algorithm development in C++. Hence, the library             
is ideal for use in writing machine learning algorithms also due to its efficient classes for                
vectors and matrices. 
 

The algorithms implemented in Armadillo greatly improved the efficiency of the           
library as demonstrated in the Benchmarking section and also simplified the algorithm            
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coding process. As CliqueLib library had algorithm implementations both in Armadillo           
matrices as well as in vector<vector> >, the major finding was that Armadillo is an               
indispensable tool in the field of machine learning. 
 
2.7. Vector Implementations 
 

For benchmarking purposes, some algorithms were written not only in Armadillo           
matrices, but also in vector<vector> >. These implementations were not ideal for            
machine learning as the datasets need to be processed in a manner that is well-suited               
by Armadillo’s implementation.  
 
2.8. Vectorization 
 

Vectorization is a technique of generalizing operations on scalars to apply           
transparently to vectors, matrices, and higher-dimensional arrays. The core idea behind           
vectorization is that operations apply at once to an entire set of values. This makes it a                 
high-level programming model as it allows the programmer to think and operate on             
whole aggregates of data, without having to resort to explicit loops of individual scalar              
operations. It looks to group data and apply a uniform handling to exploit the properties               
of data where individual elements are similar or adjacent. 
 
Below are the snippets from the loop based and vectorized implementation of KNN. 
 
 
Loop based KNN: 
 
for (unsigned int i = 0; i < k_neighbors.size(); i++)  
 { 
        float neighbor_label = k_neighbors[i][k_neighbors[i].size() - 1]; 
        if (classification.find(neighbor_label) != classification.end())  
            classification[neighbor_label] +=1;  
        else  
            classification[neighbor_label] = 1; 
 } 
 
    //set to minimum 
    int largest_val = numeric_limits<int>::min(); 
    float largest_class = numeric_limits<float>::min(); 
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    for (unsigned int i = 0; i < k_neighbors.size(); i++) 
    { 
        if (classification[k_neighbors[i][k_neighbors[i].size() - 1]] > largest_val) 
        {  
            largest_val = classification[k_neighbors[i][k_neighbors[i].size() - 1]]; 
            largest_class = k_neighbors[i][k_neighbors[i].size() - 1]; 
        } 
    } 
 
Vectorized KNN: 
 
mat X2 = sum(Xtrain % Xtrain, 1); 

mat Y2 = (sum(Xtest % Xtest, 1)).t(); 
mat XY = 2* Xtrain * Xtest.t(); 
mat dist = XY.each_col() - X2; 

        dist = dist*(-1); 
dist = dist.each_row() + Y2; 

 
 

Vectorized code is not only terse but can be many folds faster than it’s equivalent               
loop-based implementations as exhibited in the bench markings. 
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2.9. Algorithms 
 

The library is aimed to provide customizable classification ensembles. Thus, all           
the prominent classification algorithm were implemented. AdaBoost was implemented         
as an out of the box ensemble for users who weren’t interested in customizing              
ensembles but rather just use a state of the art ensemble for their application. It was                
made sure that the library had decent diversity in terms of the type of the algorithm that                 
it provides. Library was constrained to binary classifiers to make sure all algorithms             
would be compatible with the meta estimator. An alternate implementation using vectors            
was included primarily for the purpose of benchmarking and comparison.  
 
2.9.1. KNN 
 

K-Nearest Neighbors (KNN) is a simple and robust classifier that is frequently            
used as a benchmark for more complex classifiers such as Support Vector Machines             
(SVM) or Artificial Neural Networks. Despite its simplicity, KNN outperforms many           
classifiers and is used in a wide range of applications such as economic forecasting or               
data compression. Due to its efficiency and wide range of applications, KNN is             
incorporated as one of CliqueLib’s classifiers.  

In the classification setting, the KNN algorithm essentially boils down to forming a             
majority vote between the K most similar instances to a given “unseen” observation.             
Similarity is defined using distance metrics like Euclidean distance. Formally, given a            
positive integer K and an unseen observation x, KNN classifier performs the following             
steps: 

● It goes through the entire dataset and finds the distance between x and every              
other point  

● The set of K closest points to x is taken into consideration  
● It finds the labels associated with each of these K points  
● A majority voting is done among these labels. The label with the maximum vote              

is chosen as the predicted output  

The major design challenge for implementing KNN is the computational          
complexity involved in every unseen observation. Consider predicting the label of one            
unseen instance. It takes O(n) time for finding the distance of x from every point in the                 
training data and O(n log k) to get the lowest k distances. Thus, the total time taken for                  
one unseen observation would be O(n log k). If there are m unseen observations, then               
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the total time taken is O(mn log k). If the size of the data is large, then this means that                    
KNN would take several minutes to predict the label. We addressed this challenge by              
using vectorized implementation of distance computation.  
 

Let Xtrain be n * d matrix of the training data, Ytrain be the n * 1 matrix of training                    
labels and Xtest be the m * d matrix of the test data. CliqueLib uses the square of                  
Euclidean distance as the similarity measure of KNN. This can be computed by using              
the expansion of the algebra formula (a-b)^2. This can be computed as follows: 
 

1. Find X2 = Xtrain*Xtrain’  (n*n matrix)  
2. Find Y2 = Xtest*Xtest’     (m*m matrix) 
3. Find XY = Xtrain*Xtest’ (n*m matrix) 
4. Return  X2 - 2*XY +  Y2 after doing dimensionality matching  

 
This vectorized implementation of KNN improves the performance multi-folds. 

 
2.9.2. Logistic Regression 
 

Logistic Regression is a regression model where the decision boundary is linear            
and the outputs are categorical. It uses gradient descent on every data to find the best                
possible value of the weight vectors which fits the given model. However, apply gradient              
descent for every observation in the training data takes a long time because of the               
number of loops involved. In order to get rid of these loops, a vectorized implementation               
is used. This was done as follows: 

 
1. Find the transpose of Xtrain. This transpose is a d * n matrix  
2. Find Xtrain * w which is a n * 1 column vector  
3. Find sigmoid (Xtrain*w) which applies the sigmoid function on every entry of the             

vector  
4. Find the difference between Y and sigmoid(Xtrain*w) 
5. Add transpose(Xtrain) * (Y - sigmoid(Xtrain*w)) to the weight vector  

 
 
2.9.3. Perceptron 
 

Perceptron is a linear classifier algorithm with the labels {-1, 1}. It allows for              
online learning, i.e. it enables to process one element at a time from the training set. As                 
a result, two loops would be used to implement the perceptron algorithm. There is no               
way to optimize this looping. There is another variant of perceptron known as the batch               
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algorithm, which allows a simultaneous update of many observations. However, batch           
algorithms are not effective in most of the cases, and hence it was decided to move                
ahead with the online algorithm itself. Despite the use of the two for loops, the classifier                
trains in a time comparable to that of other classifiers.  
 
2.9.4. SVM 
 

SVM is a powerful linear classifier with enormous advantages. It uses the kernel             
trick to find the best possible decision boundary and also avoids overfitting by using a               
regularization parameter. It is very helpful in text categorization and image classification.            
CliqueLib implements SVM using the linear kernel. However, the computational          
overhead involved with fitting the data is huge. In order to improvise it, the Pegasos               
algorithm is used to implement SVM. Pegasos algorithm is a linear algorithm which runs              
iteratively in a fashion similar to that of Perceptron, until the algorithm converges. With              
the Armadillo library, the entire implementation of SVM was vectorized.  
 
 
2.10. Ensembles 
 
2.10.1. AdaBoost 

 
AdaBoost fits a sequence of weak classifiers on a sequence of modified versions             

of data. The predictions from all the data are combined to form a weighted majority               
voting, which eventually produces the final prediction. Typically, AdaBoost uses          
decision stumps as the weak classifiers. A decision stump is essentially a one-level             
decision tree. These stumps were created as a separate class for AdaBoost. Decision             
stumps make predictions based on just one input feature. The input feature to the              
decision stump is stored in the variable dimension. The error and threshold for each              
classifier/stump are stored as well. The AdaBoost considers a collection of these            
stumps as the Base Weak Classifier. To maintain the structure of the train function, it is                
assumed that in every epoch, one base weak classifier is learned. Thus, in each              
iteration/epoch, the AdaBoost builds a stump on the data and the modified weights.             
AdaBoost is used for large scale applications like Spam Filtering and Face Detection.             
Hence, its implementation was vectorized to reduce the latency to as much extent as              
possible. The run-time complexity for this AdaBoost implementation is O(n*t) where n is             
the size of the input data and t is the number of iterations/ number of classifiers. This                 
complexity must not be confused with the quadratic one as t << n.  
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2.10.2. Bagging Classifier  
 

The Bagging classifier or more formally, the Bagging meta-estimator was given a            
templated implementation to allow for multiple base classifiers while taking advantage of            
“Concepts”. The template argument is required to satisfy the constraints set by the             
“Classifier” concept as described in the section for Concepts.  

The implementation for the Bagging classifier was designed to be simple yet            
flexible enough to act as a meta-estimator over any classifier that could fulfill the simple               
constraints laid down by the Classifier concept. The data members for the class were              
kept to minimum, just the sequence of base classifiers which were variation of models              
on the same base classifier fit/trained on a random subsample of the training data. 

Predicting would involve iteratively predicting on each of the saved models and            
averaging/taking majority vote on these predictions. 
 
2.10.3. Voting Classifier  
 

Voting classifiers combine conceptually different machine learning classifiers and         
use a majority vote to predict the class labels. Such a classifier can be useful for a set of                   
equally well performing model in order to balance out their individual weaknesses.  

 
The requirements of a voting classifier are as follows: 
 

● Ability to add any type of classifier at any given point of time  
● Flexibility to perform both majority voting and averaging 
● Possibility to train all the classifiers under similar conditions  

 
CliqueLib incorporates the first feature by having an interface to add the            

classifier. This is done by using the function: add_classifier. A pointer to the base              
classifier is sent as the argument to the add_classifier. As it is enforced to have just                
labels +1 and -1, the concept of averaging and majority voting mean one and the same.                
All the classifiers have the same structure for predict and train functions and hence, are               
always trained under similar conditions.  
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3. Use Cases 
 

The two use cases can be found in the UseCases folder of CliqueLib’s library.              
The use cases can be compiled either by running the ./compile_cliquelib.sh script in the              
library’s root folder or by running ‘make’ in ./UseCases/UseCase1 or          
./UseCases/UseCase2. The use cases are described below. 
 
3.1. Use Case 1 
 

This use case utilizes the famous Viola Jones Face Detection technique, which            
uses AdaBoost for learning to identify a human face. A sample of 1000 images were               
taken and formatted into a CSV file using MATLAB. This CSV file was given as the input                 
to the use case application. The data was further divided into 60% training data and               
40% test data. The AdaBoost was trained with five iterations to predict if a given image                
consisted of a face or not. The accuracy of AdaBoost on this data was observed to be                 
99.5%.  
 
3.2. Use Case 2 
 

The second use case drew 569 samples from Cancer.csv which has 31 cancer             
tumor features like parameter, texture, or compactness. The aim was to test CliqueLib’s             
algorithms as well as ensembles and classify the tumor as Malignant (-1) or Benign (1).               
Hence, this was a binary classification example, which started by loading the dataset             
and splitting it into training and testing sets with ratio 80%-20%.  
 

Each classifier or ensemble was tested for accuracy and the results are            
displayed below. The performance of the algorithms was rather satisfactory. 
 

AdaBoost was selected with 5 decision stumps as empirically this was the            
number that worked well for this particular dataset. As a result, AdaBoost yielded the              
best results from all available methods. 
 
Training AdaBoost with 5 decision Stumps... 
Testing accuracy: 97.3451% 
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For KNN, the parameter K was selected to be 23 as this number represents the               
square root of the dataset size, an optimal selection for KNN. KNN’s performance was              
relatively satisfactory, as well. 
 
Training KNN with K=23 ... 
Testing accuracy: 92.9204% 
 

Larger number of epochs generally enables the algorithms to reach a more            
reliable model as the coefficients converge with more iterations. The learning rates or             
regularization parameters of the following algorithms are relatively standard and are           
small enough to allow the coefficients reach the desirable value. 
 
Training SVM with regularization parameter=0.1 and 1000 epochs... 
Testing accuracy: 85.8407% 
 
Training Perceptron with learning rate 0.01 and 1000 epochs... 
Testing accuracy: 92.9204% 
 
Training Logistic regression with learning rate 0.01 and 1000 epochs... 
Testing accuracy: 85.8407% 
 
The remaining methods focus on the main aim of the library to enable the user to                
customize various ensemble classifiers. The Bagging Classifier over 5 KNN models           
performed particularly well. 
 
Training Bagging Classifier over 5 KNN models and 1000 epochs... 
Testing accuracy: 94.6903% 
 
Training Bagging Classifier over 5 SVM models and 1000 epochs... 
Testing accuracy: 88.4956% 
 
Training Voting Classifier over KNN, Perceptron and Logistic... 
Testing accuracy: 92.0354% 
 
In sum, the Bagging Classifier over 5 KNNs and AdaBoost yielded the best results. 
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4. Unit Tests 
 

The library has been tested diligently as each feature was included in the library              
code. The tests for all algorithms and functions are present in the ./tests folder. The               
tests are compiled with ‘make’ in the library’s root directory. Consequently, the tests are              
run with ./main. The tests can be further compiled by running the script             
./compile_cliquelib.sh, which is further going to compile all use cases and benchmarking            
methods, which have a separate Makefile. 
 

The test files are called by the main function in main.cpp in the library’s root               
directory. Each test file further includes tests.h, which contains the includes of all the              
library’s algorithms. 

 
The tests are quite comprehensive. Nevertheless, a more formal structure is           

planned for the library which will utilize Catch, a modern framework for unit tests, TDD,               
and BDD. The corresponding link is below: 

 
https://github.com/philsquared/Catch  

 
 
 
 
 
 
 
 
 
 
 
 

https://github.com/philsquared/Catch
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5. Documentation 
 
The Doxygen documentation is placed in the Documentation folder in the root 

directory of the CliqueLib library, submitted in the .zip folder. The documentation can be 
also viewed in the same directory on our GitHub repository: 
 
https://github.com/skp2140/CliqueLib 
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6. Group Review 

Stan 
 

I greatly enjoyed working with the group. My primary contributions consisted of            
setting up the structure of the library including Makefiles (benchmarking, use cases,            
script, library’s compilation), file structure, and the library environment, implementations          
of KNN, Logistic Regression, and Naive Bayes (eventually removed) vector algorithms,           
benchmarking with armadillo and vector implementations alongside Weka and Mlpack          
libraries, testing suite, refactoring the codebase, Doxygen documentation, and design          
document. I also added the preprocessing functions (reading csv and the initial version             
of splitting test and training function). 
 
Aliraza 
 

Contributions from my end involved implementing the AdaBoost suit decision          
stumps and putting them together using the AdaBoost algorithm as described by Yoav             
Freund, et al ​here​. Also implemented the customizable Voting and Bagging Classifiers            
as well as the Concept of a “Classifier” as used by the Bagging classifier              
implementation. In terms of the preprocessing functionality, I was responsible for the            
split_train_test function for splitting and random shuffling the data set. 
 
Also implemented the two use cases for the library, face detection with AdaBoost and              
Cancer tumor classification with all the algorithms. This involved finalizing and curating            
the data sets for our implementation and trial and tests to select the most optimal hyper                
parameters for the algorithms. 
 
Finally, I contributed to the design documentation and project report. 
 
Srinidhi 
 

I worked on the implementations of the classifiers - SVM, KNN, Perceptron and             
Logistic Regression using the Armadillo library. Besides, implementing and testing          
these classifiers, I wrote the tutorial and contributed to the documentation.  

http://www.sciencedirect.com/science/article/pii/S002200009791504X?via%3Dihub
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7. Future work 
 
Future work on CliqueLib involves: 
 

● Extending the library to multi-class classification 
● Adding a regression module along with classification 
● Further comprehensive testing with Catch as described in the section on unit 

tests 
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9. Commit History 
 
The commit History can be viewed on the following link: 
 
https://github.com/skp2140/CliqueLib/commits/master 
 
The repository is public. 
 
 
 
 


