

Chapter I

Introduction

1.1 Overview

Nowadays, digital multimedia like cameras, video recorders, and digicams has become an

integral part of people‟s lives. Be it their availability or cost or even the quality of images or

videos they capture, they are all at their optimum best. This advancement has resulted in them

being used in day-to-day lives wontedly.

Due to the continuous sublime raise in the digital multimedia, a lot of digital content is

widely available. Furthermore, the improvements in digital content distribution have led to

easy video recording. As a result, videos act as a utility and try to facilitate our lives even

further. Videos can be used in various places like e-learning, gaming, training, conferencing,

documentaries, movies, marketing and sales tapes, aerials, albums, surveillance etc.

Amongst the various applications of digital videos, surveillance is of a great significance. The

need for surveillance has increased manifold due to increase in the demand for security. They

provide a medium for storing information, usually of people for the purpose of influencing,

managing, directing or protecting them. CCTV cameras can be found at banks, airports,

railway stations, public places, buildings, traffic signals etc. Thus, surveillance results in very

large amount of videos and in turn very large amount of data which needs to be processed.

The rapid growth in the usage of videos has led to the need to process huge chunks of visual

data. Processing these very huge chunks of data demands plenty of resources like time, man-

power, hardware storage, etc. So as to solve this problem, various solutions have been

provided in the literature. Video summarization is one amongst them. It allows the user to

navigate through and retrieve only the interesting sequences of the video. It helps in efficient

storage, quick browsing and retrieval of large collection of video data without losing

important aspects. Video summarization can be defined as a non-linear content-based

sampling algorithm, which provides a compact representation of a given video.

Chapter 1 Introduction

2

Specifically, any video summarization technique offers the following requirement, “I have

just an hour to watch this video, tell me what to watch and where to watch”. It automatically

compiles the most salient and informative portion of the video for the users, by automatically

scanning through the video stream, clustering the related scenes and removing the temporally

redundant contents.

The proposed and implemented project is a video summarization system. It uses various

clustering techniques for summarization. Unlike earlier techniques, the average processing

time taken by this system is roughly equal to the original length of the video. It also compares

and analyses three well-known clustering techniques.

1.2 Motivation

Video has been around for a long time. Producing styles have evolved over the years,

distribution channels have emerged, interactivity has blossomed, and technology has changed

the face of videos over the years. The old cliché says “A picture is worth a thousand words”.

Now that picture is no longer a picture, but a video. Here are some facts according to Going

Social: The State of Video in 2013 that support the paradigm shift from “A picture is worth a

thousand words” to “A moving picture is worth a million people”:

 Forty billion videos are streamed in U.S. each month

 Seventy five people watch videos online each month

 $6.3 billion will be spent on video ads in 2015

These are not just numbers, they help us grasp the magnitude of why video is more than just a

fantastic story telling medium. With the increasing importance of videos in day to-day life, it

is necessary to develop efficient and flexible video processing techniques.

Surveillance videos are gaining popularity since early 1990‟s. There has been a significant

expansion of CCTV surveillance around the world. The globalised trends of late modernity

have accelerated this growth. Few facts regarding surveillance videos across the world are as

follows:

 Beijing, London, Chicago, Houston and New York are the top five cities with the

largest surveillance networks

 1.2 Motivation

3

 About 400,000 surveillance cameras have been installed in Beijing and 70,000 have

been added since the end of 2010, according to the Beijing Security and Protection

Industry Association (BSPIA)

 UK has 1% of world's population but 20% of its CCTV cameras

 India and China have the highest CCTV camera markets in Asia

Surveillance videos are usually very long. They exhibit redundancy at a very large scale. Due

to various time and storage constraints summarizing such videos becomes a necessity than an

accessory. The main motive of video summarization is to value time and make the video as

short and crisp as possible within a smaller time span, albeit retaining the important aspects

of the video.

Video summarization does not restrict itself to surveillance videos. Imagine viewing wedding

videos. Most people would not want to go through these long recordings. A video summary

in such cases could provide a condensed and viewer-friendly recap.

Most of the existing summarization techniques have a processing time which is at least 1.5

times the original video length. Despite reducing the video length, these systems, thus, fail to

fulfil its main motive of reducing the effective time. The importance of videos in the current

era, the size of videos and the flaws in the existing video summarization techniques

motivated this project.

1.3 Problem Formulation

There are two main techniques for video summarization: Key-frame based and video

skimming. In key frame based techniques, a subset of representative frames that contain

significant visual content are selected and then played as video summaries. These

representative frames are extracted using techniques like clustering. In video skimming, the

original video is segmented into various parts of shorter duration; interesting segments are

then chosen and joined to form a summary.

Both the techniques have their own advantages and disadvantages. Key-frame based

summarization selects the most valuable frames, but does not produce a continuous video. On

the other hand, video skimming promises continuity but is not efficient in terms of choosing

Chapter 1 Introduction

4

the segments. This system implements the best of both techniques under one roof. It uses the

idea of clustering from key frame summarization and uses the idea of temporal segmentation

from video skimming.

The working of this video summarization system mimics the human brain. This analogy is

explained as follows: Man starts scanning the video as-and-when it begins. He keeps in mind

all those video clippings which he had watched in this process. Whenever he sees a new part

of the video he tries to compare it with what was already seen. If the key features of both the

videos are the same, then he concludes that this portion of the video was redundant and he

could have had omitted watching the same. Subconsciously, he creates scenes in his mind,

which technically can be thought of as clusters. Thus, the basic problem for video

summarizer is to develop this cognitive model. Apart from this, issues like complexity,

responsiveness and accuracy exist. Effective time must not exceed twice the original video

length. The system must take videos of both structured and unstructured nature.

1.4 Overview of Proposed and Implemented Solution

As discussed in section 1.3, the system mimics the working of human brain. The proposed

and implemented work is nothing but a clustering agent. Clustering is chosen as it is one of

the most common and effective video summarization mechanisms. The clustering agent

perceives the inputs of the video, which happens to be its environment. It creates clusters and

assigns segments to these clusters. Valuable segments are chosen from these clusters in a

round robin fashion.

The crisp idea of the project is as follows: Given a video, the video summarizer scans through

the main video stream and generates the segments temporally. The first frame of each

segment is considered to represent it. The histograms of all these representative frames are

plotted. Based on these histograms, value vectors for all frames are computed. These vectors,

or the dataset D, are the inputs to the clustering algorithms. The various algorithms used in

this project are- K-means, KFCG and FCM. These algorithms return the clustered data set.

Frames are chosen from the clusters in round robin manner and corresponding segments are

added to the summary video file.

 1.4 Overview of proposed and implemented solution

5

The main novelty with this approach is that it is simple and provides consistent output videos.

All ideas of learning, reasoning, understanding and responding are taken from data mining

and various artificial intelligence techniques. It is due to this reason that the system promises

to perform partly-online summarizing rather than a batch approach.

1.5 Scope of the Project

The scope of this project is implicit. Its application area ranges from surveillance to ordinary

videos.

The system can be profoundly used in the surveillance set-up. Assuming that we have been

provided with a 2 hour video and we want to spot a person who passed by just for a minute. It

is extremely unfruitful to watch the entire length to just find a thing which is not even one-

hundredth of the input time. The system solves this problem by reducing the video length

effectively. Thus, the system would be of great use to investigation officers.

It can also be used to reduce the lengths of boring monotonous videos. Various recordings of

functions like weddings can be made crisp with the help of this system.

Sports videos and documentaries are no exception. The system can summarize them

accurately. The system retains the original story-line of these videos to a great extent.

These are just some applications of the system. The scope of the system is not limited. It can

be used wherever a video is involved.

Chapter II

Review of Literature

Due to the immense improvements and advances in the Digital world, video summarization

can be thought of as the need of the hour. Marat Fayzullin proposed a model of video

summarization based on three parameters: Priority (of frames), Continuity (of the summary)

and non-repetition (of the summary). As per the CPR model, an optimal summary is the one

that maximizes an objective function based on these three parameters.
[1]

 All the existing

summarization techniques follow this model.

A video summary represents the abstract view of the original video. It is simply a highlight of

the original sequence which is the concatenation of selected video segments or key frames.
[2]

Essentially, video summarization can be of two types: Static or Dynamic. Static video

summaries are composed of a set of key frames extracted from the original video sequence.

On the other hand, Dynamic summaries are composed of a set of shots and are produced by

taking into account the similarity or domain-specific relationships among all video shots.

Static video summaries can be created for originally structured videos like movies; whereas

Dynamic video summaries are more appropriate for unstructured random videos like

surveillance videos. The need for summarization is more for unstructured data as they are

more profoundly dilated in our day to day lives. Hence, it is necessary to work for and

develop dynamic summarization more closely.

Most of the static summarization techniques use a key frame based approach. A key frame is

a frame that represents the content of a logical unit.
[3]

 A key frame must be as much

representative as possible. Key frames based summarization was further classified using

sampling, scene segmentation and shot segmentation.
[4]

Research was going on for having different approaches to key frame summarization. One

such included extracting key frames which represent the most important contents of the

video.
[5]

 Such approaches use the basic idea of frame difference.

 2 Review of Literature

7

A popular technique in key frame summarization is to compute frame differences based on

some criteria and then discard the frames whose difference with the adjacent frames are less

than a certain threshold. Various low level features have been applied for this purpose

including colour histograms, frame correlations, etc.
[6]

 The frame difference based methods

are intuitive and simple in nature. These properties make them suitable for real-time

applications. However, for extracting a particular key frame, these techniques consider only

sufficient content change between consecutive frames. Therefore, they do not completely

represent the video preceding it. Moreover, the key frame based approach does not give

smooth and continuous summaries.

In any dynamic summarization, the problem under consideration is the representation of the

various features. A feature vector in this case represents an interesting point. The use of such

vectors makes the problem more manageable while providing increased robustness to noise

and pose variation. Spatio- temporal cuboids
[8 9]

are used for this behaviour recognition and

feature representation. They describe the local temporal patch around the detected interest

points. In other words, Spatio-temporal cuboids provide a recognition algorithm for

interesting points. After detecting the interesting points, the point of concern is to represent

them as a vector. Various features have to be extracted like visual appeal, motion, sound, etc.

The approach using histograms has led to state-of-art in the feature representation of an

interesting point. Histogram of Gradient
[10]

is used for representing an object; whereas

Histogram of Optical Flow
[11]

 is used for representing motion. Based on these approaches,

Zhao
[12]

 proposed a dynamic model for unstructured videos.

So as to make the key frame based techniques effective, we encapsulate the idea of both static

and dynamic summarization under one roof. This not only makes it easy to implement but

also makes the system almost in par with any dynamic technique.

The proposed and implemented system implements key features of Zhao model in the normal

key-frame based set-up. It uses clustering for summarization
 [13]

. Clustering analysis has been

studied in other areas like data mining, machine learning and statistics. Different clustering

techniques have been proposed with different capabilities and different computational

requirements. Most clustering techniques share their need for user-specified arguments and

prior knowledge to produce best results.

Chapter 2 Review of Literature

8

Clustering is multi-disciplinary
[14 15]

. Clustering has always been used in statistics and

science. It was introduced in pattern recognition framework in 1973 by Duda and Hart. Image

segmentation clustering algorithms can be applied to image segmentation
[16]

 and computer

vision
[17]

. Clustering is also used for data compression in image processing; this is also

known as vector quantization. It can also be used for data modelling.

In video summarization, visually similar frames are clustered into one group using the

Euclidean distance measure. When clusters are formed, a fraction of the frames that has given

a larger distance metric is retrieved from each group to form a sequence making up the

desired output
[18]

. Clustering ensures that video summary represents the most unique frames

of the input video and gives equal attention to preserving continuity of the summarized video.

Clustering algorithms can be classified into two categories: partitional and hierarchical
[19]

.

Partitional clustering attempts to directly decompose the data sets into a set of disjoint

clusters. The criterion function that the clustering algorithm tries to minimize may emphasize

the local structure of the data, as by assigning clusters to peaks in the probability density

function, or the global structure. Typically the global criteria involve minimizing some

measure of dissimilarity in the samples within each cluster, while maximizing the

dissimilarity of different clusters. K-Means and FCM are some examples of partitional

clustering techniques. K-Means algorithm starts by taking k centroids, one for each cluster

and then associates each point in the given data set to the nearest centroid
[20]

. FCM algorithm

works by assigning membership to each data point corresponding to each cluster on the basis

of distance between the cluster centre and data point; more the data is nearer to the cluster

centre more is its membership towards that particular cluster
[21]

.

Hierarchical clustering proceeds successively by either merging smaller clusters into larger

ones or by splitting larger clusters. The clustering methods differ in the rule by which it is

decided which two small clusters are merged or which large cluster is split. KFCG
[22]

 is an

example of top-down hierarchical clustering. In KFCG algorithm, initially centroid is

computed. Two vectors are generated by adding proportionate error to the centroid. Euclidean

distances of all the points are computed with respect to the vectors. Two clusters are formed

based on the proximity to the vectors. This process continues for many iterations.

This system implements and analyses K-Means, FCM and KFCG clustering methods.

Chapter III

System Analysis

3.1 Functional Requirements

The system requires the user to browse and select the required video intended to be

summarized. Having selected the video, the GUI provides the user an option amongst the

three clustering methods- K-means, KFCG and FCM – to be used for summarization. Having

selected the method, the processing begins after which the user can view the summary. A

progress bar shows the status of summarization.

On the other hand, once the user selects the process button, the system agent scans through

the input video, obtains temporal data, extracts the frames and stores them for further

processing. It then processes the frames stored, using the method prompted by the user and

stores the frames, used for summary construction. Once the user opts to view the summary

from the GUI, a summary video is constructed from the former frames. The summary is

displayed and the frames stored are thereby deleted.

Based on these, the functional requirements of the various subsystems are as described in

sections 3.1.1 and 3.1.2.

3.1.1 Input System Requirements

The user must essentially do the following for the summarization process:

i. Upload a video of an appropriate quality with the minimum signal-to-noise ratio

ii. The video must have at least some redundancy, else the effect of summarization

would be minimal

iii. The input video must be in AVI or MP4 format

iv. The input video needs to be unstructured for optimum results

Chapter 3 System Analysis

10

3.1.2 Processing and Output System Requirements

i. Individual frames extracted, need to be saved in a directory, so that their histograms

can be obtained and further processing- as prompted by user- can be done

ii. The system must have sufficient space to store the frames which are being extracted

and processed

3.2 Non Functional Requirements

A non-functional requirement specifies the criteria that can be used to judge the operation of

a system, rather than specific behaviours. The various non-functional requirements of the

video summarization system are:

i. Performance: Requires a high speed processor so that the summarization can be done

as fast as possible.

ii. Latency: Processes the videos such that the length of the summarized videos is less

iii. Accuracy: The output summary must contain all the important aspects of the original

video

 3.3 Specific Requirements

The specific requirements highlight the various software and hardware requirements of the

system.

 Software requirements:

i. MATLAB R2013a and ahead.

ii. Windows 7 or ahead

 Hardware requirements:

i. 3.4 GHZ Intel Core i3 processor or ahead.

ii. Minimum 4 GB of RAM

3.4 Use case diagram and description

11

3.4 Use Case Diagram and Description

Based on the functional requirements and system description, the use case diagram for the

summarization system is constructed. Tables 3.1-3.5 give the description of the various use

cases used in Figure 3.1

Fig. 3.1 Use Case Diagram of the video summarization system

Table 3.1 Description of the use case- Select the method for summarization

Use case name Select the method for summarization

Actor System

Brief

description

The system implements three clustering techniques namely: K-Means,

KFCG and FCM. The user choses the method in which he is interested

Preconditions Video should be uploaded

Post-conditions Appropriate clustering technique is chosen

Flow of Events 1. The user accesses the system and uploads the video

2. The user then choses the technique needed by him

Register
Upload video for summarization

Select the method for summarization
User

View the output

Segment the video

Construct and cluster the representative vectors

Choose the segments for the output summary

System

Regenerate the summarized
output

<<include>>

<<include>>

Chapter 3 System Analysis

12

Table 3.2 Description of the use case-Segment the video

Use case name Segment the video

Actor System

Brief

description

This module scans the entire unstructured video and makes temporal

segments

Preconditions Video should be uploaded and should be unstructured

Post-conditions Make temporal segments

Flow of Events 1. The user accesses the system and uploads the video

2. The video is then scanned and temporal segments are made

Table 3.3 Description of the use case-Construct and cluster the representative vectors

Use case name Construct and cluster the representative vectors

Actor System

Brief

description

First frame from each segment is considered to be the representative

frame for that segment. The histogram vectors for these frames are

constructed. These vectors are then clustered using the selected

technique

Preconditions The entire video should be scanned and temporal segments should be

made

Flow of Events 1. The uploaded video is scanned

2. Based on the frame rate, the temporal segments are made

3. First frame of each segment is taken

4. Histograms for these frames are computed

5. Each Histogram is represented as a vector

6. These vectors are clustered using the chosen technique

3.4 Use case diagram and description

13

Table 3.4 Description of the use case - Choose the segments for output summary

Use case name Choose the segments for output summary

Actor System

Brief

description

Representative frames from each cluster are chosen in a round robin

fashion. The corresponding segments to these frames are then extracted

Preconditions Value vectors of representative frames must be clustered using some

appropriate technique

Post-conditions Get the segments to be present in the output summary

Flow of Events 1. The frames are clustered

2. Frames from these clusters are chosen in a round robin fashion

3. Corresponding segments are then extracted

Table 3.5 Description of the use case - Regenerate the Summarized output

Use case name Regenerate the summarized output

Actor System

Brief

description

This module plays the sequences in the chosen segments as the output

summary

Preconditions Video must be segmented and the segments must be clustered

Post-conditions Generate the output

Flow of Events 1. The frames are clustered

2. Few frames are chosen and the corresponding segments are

extracted

3. These segments are then played as the output summary

Chapter IV

Analysis Modelling

4.1 Data Flow Diagram

The various levels of DFD of the video summarization system are given in Figures 4.1-4.6.

The data dictionary for the same are given in Tables 4.1-4.6

Fig. 4.1 DFD Level 0: Context Diagram for Video Summarization

Table 4.1 Data Dictionary for DFD Level 0

Data Description Data Type

Video The video to be summarized is browsed and given to

the system

AVI

MP4

Technique The user choses the technique for summarizing the

video

String

Summarized

Video and

Analysis

The input video is processed and the summarized

video is given to the user. The user can also compare

the various clustering techniques for summarizing the

given video

AVI

MP4

 4.1 Data Flow Diagram

15

Fig. 4.2 DFD Level 1

Table 4.2 Data Dictionary for DFD Level 1

Data Description Data Type

Video The video to be summarized is browsed and given to

the system

AVI

MP4

Value

Vectors

Every Segment is represented using a value vector Unsigned

Integer

Technique The user gets to choose the method for clustering:

K-Means, KFCG, FCM

String

Clusters Similar video segments fall under one cluster Cell Array

Summarized

Video

The input video is processed and the summarized

video is given to the user

AVI

MP4

Chapter 4 Analysis Modelling

16

Fig. 4.3 DFD Level 2 for segmentation

Table 4.3 Data Dictionary for DFD Level 2 for Segmentation

Data Description Data Type

Video The video to be summarized is browsed and given to

the system

AVI

MP4

Frames Videos can be thought of as a set of images which are

moved at a constant rate. Frames are these constituent

images of the video

JPEG

Segments Group of frames form a segment Array of

Images

Frames Every segment is represented by a frame. For

convenience, we assume the first frame of every

segment to represent that segment

JPEG

Value

Vectors

Every frame can be represented as a vector. This

vector is known as the value vector

Unsigned

Integer

 4.1 Data Flow Diagram

17

Fig. 4.4 DFD Level 2 for K-Means Clustering

Table 4.4 Data Dictionary for DFD Level 2 for K-Means Clustering

Data Description Data Type

Value

Vectors

They are the representative vectors of the frame

Unsigned

Integer

Centroids Video can be thought of as a set of value vectors.

Amongst these vectors, we choose some vectors as the

centroids

Integer Array

Distance

Vectors

Distance of every vector with the centroid is computed Integer Array

Clusters Similar video segments fall under one cluster. Lesser

the distance vector, more similar are the vectors and

thus, more the probability of falling under one cluster

Cell Array

Centroids Centroids of the new clusters are again calculated. This

continues for some fixed number of iterations

Integer Array

Chapter 4 Analysis Modelling

18

Fig. 4.5 DFD Level 2 for KFCG Clustering

Table 4.5 Data Dictionary for DFD Level 2 for KFCG Clustering

Data Description Data Type

Value

Vectors

They are the representative vectors of the frame Unsigned

Integer

Mean C The average of the cluster under consideration is

computed. Initially, we assume the entire set of value

vectors as one cluster

Double

C1, C2 These two values are generated due to deviations in the

original mean

C1 = 1.1 x C

C2 = 0.9 x C

Double

Clusters Similar video segments fall under one cluster. Here,

the distances are computed with respect to C1 and C2

Cell Array

4.1 Data Flow Diagram

19

Fig. 4.6 DFD Level 2 for FCM Clustering

Table 4.6 Data Dictionary for DFD Level 2 for FCM Clustering

Data Description Data Type

Value

Vectors

They are the representative vectors of the frame Unsigned

Integer

Centres Random centres from the initial set is chosen Integer Array

Membership

Values

Membership values of every cluster-element pair is

computed

Integer

Matrix

Fuzzy

Centres

Based on the membership values, new fuzzy centres

are computed

Integer Array

The Level 0 DFD gives the basic structure of the system. The user gives the video and his

desired clustering technique. The video summarization algorithm processes these inputs and

gives back the summarized video as the output.

The Level 1 DFD gives the various stages of the summarization process. The video is first

segmented temporally. Feature vectors are used to represent these segments. The feature

vectors are clustered. Segments from these clusters are chosen randomly.

The Level 2 DFD for segmentation explains the process of segmentation in detail. Frames are

extracted from the video. Group of frames form a segment. The first frame of every segment

Chapter 4 Analysis Modelling

20

represents the segment. Histogram is made for the representative frames. With the help of

these histograms, value vectors are calculated.

4.2 Activity Diagram

The activity diagram gives the complete flow of the project from the system point of view.

The activity diagram for the video summarization system is given in Figure 4.7. This diagram

can be described as follows: the user first browses for the video and choses the technique for

clustering. Video summarizer first segments the video and evaluates vectors for every

segment. It then clusters these vectors based on the technique chosen by the user.

Representative frames are chosen from these clusters in a round robin manner. The segments

corresponding to the chosen frames are extracted. The sequence of these segments is the

output summarized video.

Fig. 4.7 Activity Diagram for the Video Summarization System

Select clustering

method

K-Means KFCG FCM

Upload Video

Scan through the video

Perform temporal

segmentation

Frame representation

Feature frame

extraction

Scan through clusters

in round robin fashion

Chose random frames

from each cluster

Extract corresponding

segments

Output Video

 4.3 Timeline Chart

21

4.3 Timeline Chart

Project timeline is a chart showing progress on different project activities on calendar time

scale. The timeline chart in Figure 4.8 gives the scheduled plan for this project in the year

2014-2015.

Fig. 4.8 Timeline Scheduling for the project

Chapter 4 System Analysis

22

The various phases as described in the project time line are:

i. Problem Statement Formulation and Requirements Gathering

ii. System Analysis

iii. Modelling

iv. Ground work and Implementation

v. Testing

A Gantt chart provides a graphical illustration of a schedule that helps to plan, coordinate,

and track specific tasks in a project. The Gantt chart for the timeline scheduling in Figure 4.8

is given in Figure 4.9.

Fig. 4.9 Gantt chart for the project

Chapter V

Design

5.1 System Description

The system starts scanning the video. Temporal segmentation is performed while scanning.

The length of a segment, k varies as per the video length. It is assumed that the first frame of

every segment represents that segment; thus it is considered as the representative frame. The

vectors for the representative frames are known as value vectors. Value vectors can be simply

thought of as very big numbers. Value vectors are computed as follows:

 () (1)

histogram (i) denotes the intensity value in the histogram of the i
th
 intensity pixel. The value

of i varies from 0 to 255. For the sake of complexity, the frames are converted to grey scale

before finding the histogram. This is so because if left in the RGB colour system, three

different histograms for R, G and B would have had to be computed. The value vector

increases as the image tends to be brighter. Thus, as per the system, brighter objects tend to

show distinct important features.

Every segment is, thus, represented by a value vector. Hence, the process of clustering

segments simply results to the process of clustering the value vectors. These vectors are

clustered using any of the clustering techniques (K-Means, KFCG and FCM). Each algorithm

makes eight different clusters. The user gets to choose the clustering technique as per his/ her

interest.

The output summary will always have 8 segments. Making the number of output segments

will not make the video length constant as the size of each segment is different for different

videos. Each cluster is moved across in a round robin manner. The highest valued segment is

always chosen from the cluster. The summarised video is simply the collection of these

segments.

Chapter 5 Design

24

5.2 Description of the Architecture

Fig. 5.1 Block Diagram of the video summarization system

The various phases in the Figure 5.1 are explained as follows.

1. Input Video

The input video is taken from the user. Frames are extracted from this video. The video

should be in AVI or MP4 format

2. Create Segments

Group of frames form a segment. Let t denote the initial video length. Let k denote the time

duration of each segment in seconds. Let f denote the frame rate of the video.

Initially, the video duration is in seconds. This duration is then converted from seconds to

minutes by dividing by 60. The obtained duration is rounded off to the nearest integer. It must

be noted that the value of k cannot be 1. This is so because a 1 frame segment is equivalent to

no segmentation at all. Thus, the rounded integer is multiplied by 2 so as to make the

minimum segment length as 2.

Let t be less than 30 seconds.

 (

)

(3)

 (

) (2)

Input

Video

Segment

Selection

Round robin

from each

cluster until

time is out

Generate

video

Join all

selected

segments

Cluster

frames

K-Means

KFCG

FCM

Feature

Selection

Generate

histogram

for each

frame

Create

Segments

 5.1 Description of the Architecture

25

The segment length will be zero if the original video length is less than 30 seconds. Thus, we

restrict the system to take videos of length of at least 30 seconds. For videos of length lesser

than 30 seconds, the system would give errors.

Number of frames in a segment, n, can then be computed easily.

 (4)

3. Feature Selection

The representative frames are chosen. For simplicity, the first frame of each segment is

chosen as the representative frame. These frames are then represented by the value vectors.

Value vectors can be computed by using Equation 1.

4. Cluster Frames

Data set to be clustered is the set of value vectors of the representative frames. The data set is

clustered according to the technique chosen by the user.

5. Segment Selection

The number of output segments is kept as 6. Thus, the clusters are traversed in a round robin

manner for 6 iterations. In a single iteration, only one cluster is considered and only one

vector is chosen from the cluster. So as to optimise the results, the highest valued value

vector is always chosen from the clusters.

Segments corresponding to the value vectors are extracted. These segments form the

sequences of the summarized video.

6. Generate Video

The output segments are then played as a video.

Chapter 5 Design

26

5.3 User Interface Design

Before implementation, it is necessary to design the final interface of the system. The menu

structure and navigation flow must also be developed in order to avoid poor interface design.

The basic interface of the video summarization system is given in Figure 5.2

Fig. 5.2 Main Interface of the Video Summarizer

The tentative functions of the buttons used in Figure 5.2 is given below:

Browse Video: User browses for the video to be summarized. It provides a simple

menu structure

Select Method: The user selects the clustering technique

Process: User clicks this button for summarizing the original video. A process bar

must be present to show the user the status of processing. Figure 5.3 represents the

process bar design for this system

View Summarized Video: The output summary should be played. The analysis of the

processing time should also be displayed. Figure 5.4 gives a rough design of the

analysis

VIDEO SUMMARIZER

Browse Video
View Summarized

Video

Process

Select Method

K- Means

KFCG

FCM

5.2 User Interface Design

27

The process bar for the video summarization system is given in Figure 5.3. This process bar

must be displayed as soon as the user presses the process button and must be closed as and

when the processing of the video is finished.

Fig. 5.3 Process Bar

The layout of the analysis chart is given in Figure 5.4. This chart must be comprehensive and

should give the quantitative values of all the major parameters involved.

Fig. 5.4 Design of analysis to be displayed after summarizing

The system must also show all the representative frames of the initial video and the

summarized video. They can be displayed during processing

Processing: KFCG

Original Video Length: ____

Summarized Video Length: ____

Processing Time: ____

Chapter VI

Implementation

As discussed in Section 5.2, the video summarization system goes through the following

phases: input acquisition, segmentation, feature selection, clustering, segment selection and

video generation.

The video summarization system is implemented in MATLAB. MATLAB takes video only

in AVI or MP4 format. Thus, the input acquisition phase restricts the video to be in these two

formats only. MATLAB provides various functions for getting the properties of the video.

These functions are used widely in the implementation of this system.

After getting the input video, the system segments the video. The segment length is

determined by Equation 2. The first frame is chosen as the representative frame. The

representative frames are stored in a dictionary.

The representative frames are converted into grey scale for easy processing. The histograms

of these frames are computed in the feature selection phase. MATLAB provides an in-built

function named “imhist” for determining the histogram of a given image. Value vectors for

the representative frames are computed using Equation 1.

The value vectors form the data set for the clustering phase. MATLAB provides built-in

functions for K-Means and FCM clustering techniques.

 The kmeans function takes a pre-defined number of clusters and the data set as its

input parameters. The kmeans function returns an n-by-1 vector containing the cluster

indices of each point

 The fcm function is the MATLAB function for FCM clustering. The input arguments

of this function are: the data set to be clustered and the number of clusters. This

function returns complex arguments as output. The output arguments of this function

are:

 6 Implementation

29

o Centre: Matrix of final cluster centres where each row provides the centre

coordinates

o U: Fuzzy Membership Matrix

o Obj_fcn: Values of the objective function during iterations

The segment selection phase iterates through the clusters in round robin fashion. In every

iteration, the highest valued vector is chosen. The “checkvalue” function given in Section 6.6

maps the chosen representative vector to its corresponding segment.

In the last phase, the chosen segments are ordered as per the input video ordering and are

written into a video file.

In this chapter, Sections 6.1-6.7 gives the MATLAB codes of the important routines.

MATLAB was chosen due to the following reasons:

 The graphical output is optimized for interaction. You can plot your data very easily,

and then change colours, sizes, scales, etc. by using the graphical interactive tools

 Vectorized operations can be performed easily

 Gives pre-defined functions for K-Means and FCM

 Provides a very simple and easy-to-understand syntax

 Allows object oriented programming

 Provides a very-large database of built-in algorithms for image processing and

computer vision applications

 Allows to call external libraries, such as OpenCV

 Provides easy environment for working with videos

6.1 VideoMain

 Takes input video from user

 Determines the segment size

 Temporally Segments the video

 Extracts the representative frames from each segment

Chapter 6 Implementation

30

global ExPath d l k framerate1 numFrames1 numFramesWritten11;

%Extracting & Saving of frames from a Video file through Matlab Code%

d.setValue(0.1);

l=6;

% assigning the name of sample avi file to a variable

filename1 = ExPath;

%reading a video file

mov = VideoReader(filename1);

framerate1=mov.FrameRate;

k1=round(mov.duration/60);

k=k1*2;

% Defining Output folder as 'snaps'

opFolder = 'C:\VideoSumm\snaps';

%if not existing

if ~exist(opFolder, 'dir')

%make directory & execute as indicated in opfolder variable

mkdir(opFolder);

end

%getting no of frames

numFrames1= mov.NumberOfFrames;

%setting current status of number of frames written to zero

numFramesWritten11 = 0;

t=1;

%for loop to traverse & process from frame '1' to 'last' frames

for m = 1 :k*framerate1 :numFrames1

 6.1 VideoMain

31

 numFramesWritten11 = numFramesWritten11 + 1;

 currFrame = read(mov, m); %reading individual frames

 opBaseFileName = sprintf('%d.png', t);

 opFullFileName = fullfile(opFolder, opBaseFileName);

 imwrite(currFrame, opFullFileName, 'png'); %saving as 'png' file

 t=t+1;

end

d.setValue(0.3);

VideoSum;

6.2 VideoSumKMeans

global d numFramesWritten11 FileName framerate1 processName imageNames1 k;

n=numFramesWritten11-1;

fd=FrameDef.empty;

dataset=zeros(n,1);

for i=1:n

 %accessing first frames of each segment

 name=strcat(num2str(i),'.png');

 name=strcat('C:\VideoSumm\snaps\',name);

 im1=imread(name);

 %histograms

 im1=rgb2gray(im1);

 h=imhist(im1); value=0;

 for t=1:256

 Plots histogram of the representative frames

 Computes value vectors based on the histograms

 Clusters the vectors based on K-Means Algorithm

 Selects highest valued vectors from the clusters in a round-robin fashion

 Extracts entire segments of the value vectors and generates output video

Chapter 6 Implementation

32

 value=value+t*h(t);

 end;

 dataset(i)=value;

 fd(i)=FrameDef(name,value,0);

 end;

d.setValue(0.4);

[idx,C] = kmeans(dataset,k);

clust=zeros(n,k);

final=zeros(l,1);

for j=1:k

 for o=1:n

 if idx(o)==j

 clust(o,j)=dataset(o,1);

 end

 end

end

d.setValue(0.5);

rr=1; ss=1;

clust=sort(clust,'descend');

display(clust);

temp=1;

while true

 if(ss>l)

 break;

 end

 if (clust(temp,rr)~=0)

 pos=checkValue(clust(temp,rr),n,fd); %find the value in object array

 if(fd(pos).flag==0) %flag to avoid repeatability of frames

 final(ss)=clust(temp,rr);

 fd(pos).flag=1;

 rr=mod(rr,k)+1;

6.2 VideoSumKMeans

33

 ss=ss+1;

 temp=1;

 else

 temp=temp+1;

 end;

 else

 temp=temp+1;

 continue;

 end

end

finalpos=zeros(1,l);

for i=1:l

 finalpos(i)=checkValue(final(i),n,fd);

end

sortedpos=sort(finalpos);

%displaying the sorted segments in a window

figure('units','normalized','outerposition',[0 0 1 1],'Name','selected Segments');

 for n = 1:length(sortedpos)

 f= fullfile(workingDir,'snaps', imageNames1{sortedpos(n)}); % it will specify images

names with full path and extension

 our_images = imread(f); % Read images

 subplot(10,10,n), imshow(our_images); % Show all images

 title(strcat('Segment ',num2str(sortedpos(n))));

 end

d.setValue(0.6);

opFolder = 'C:\VideoSumm\snaps2';

 %if not existing

 if ~exist(opFolder, 'dir')

 %make directory & execute as indicated in opfolder variable

 mkdir(opFolder);

 ttt=1;

Chapter 6 Implementation

34

 for i=1:l

 count=((sortedpos(i)-1)*k*framerate1)+1;

 count2=(count+k*framerate1);

 for m = count:count2

 %numFramesWritten11 = numFramesWritten11 + 1;

 currFrame = read(mov, m); %reading individual frames

 opBaseFileName = sprintf('%d.png', ttt);

 opFullFileName = fullfile(opFolder, opBaseFileName);

 imwrite(currFrame, opFullFileName, 'png'); %saving as 'png' file

 ttt=ttt+1;

 end

end

d.setValue(0.9);

%storing snaps2 folder images in imagesNames to create a video

workingDir = 'C:\VideoSumm';

imageNames = dir(fullfile(workingDir,'snaps2','*.png'));

imageNames = {imageNames.name};

%sorting the imagesNames according to numeric names of images

for i = 1:length(imageNames)

out(i) = cellfun(@(x)str2double(regexp(x,'\d*\.\d*','match')),imageNames(i));

end

out=sort(out);

for i = 1:length(imageNames)

 imageNames(i)=cellstr(strcat(num2str(out(i)),'.png'));

end

 %assign name to output file

FileName=strcat(FileName,'_summarize.avi');

outputVideo = VideoWriter(fullfile(workingDir,FileName));

outputVideo.FrameRate = framerate1;

6.2 VideoSumKMeans

35

open(outputVideo)

for ii = 1:length(imageNames)

 img = imread(fullfile(workingDir,'snaps2',imageNames{ii}));

 writeVideo(outputVideo,img)

end

d.setValue(1);

close(outputVideo)

d.dispose();

msgbox('Processing Finished');

%remove directories

rmdir('C:\VideoSumm\snaps','s');

rmdir('C:\VideoSumm\snaps2','s');

processName='K means';

analysisOfProcess;

6.3 KFCG Function

function clust=kfcg(D,itr)

%global numFramesWritten11;

D=transpose(D);

Y=cell(power(2,itr),1);

A=cell(power(2,itr+1)-1,1);A{1}=D(1,:); l=1;

for i=0:itr-1

 for j=1:power(2,i)

 l=l+1; n1=l;

 Takes the value vector data set and number of iterations as parameters

 Applies KFCG algorithm on the data set

 Returns the clusters in matrix form

Chapter 6 Implementation

36

 p=floor(l/2);

 C1=1.1*mean(A{p});

 l=l+1;

 C2=0.9*mean(A{p}); n2=l;

 m=1; n=1;

 for k=1:length(A{p})

 b=A{p,1}(1,k);

 if abs(b-C1)>abs(b-C2)

 A{n1,1}(1,n)=b; n=n+1;

 else

 A{n2,1}(1,m)=b; m=m+1;

 end

 end

 end

end

q=power(2,itr);

for j=1:q

 Y{q-j+1}=A{l}; l=l-1;

end

Y = Y(~cellfun(@isempty, Y)); col=numel(Y);

for i=1:col

 M(i)=length(Y{i});

end

row=max(M)-1; clust=zeros(row,col);

for i=1:col

 for j=1:row

 if j<=length(Y{i})

 clust(j,i)=Y{i,1}(1,j);

 end

 end

end

6.4 VideoSumFCM

37

6.4 VideoSumFCM

global d numFramesWritten11 FileName framerate1 mov processName imageNames1;

n=numFramesWritten11-1;

fd=FrameDef.empty;

dataset=zeros(n,1);

for i=1:n

 %accessing first frames of each segment

 name=strcat(num2str(i),'.png');

 name=strcat('C:\VideoSumm\snaps\',name);

 im1=imread(name);

 %histograms

 im1=rgb2gray(im1);

 h=imhist(im1); value=0;

 for t=1:256

 value=value+t*h(t);

 end

 dataset(i)=value;

 fd(i)=FrameDef(name,value,0);

end;

d.setValue(0.4);

opts = [nan;nan;nan;0];

[center,U,obj_fcn] = fcm(dataset,k,opts);

 Plots histogram of the representative frames and computes value vectors based

on the histograms

 Finds the membership values of the value vector and clusters

 Assigns vectors to various clusters based on the membership values

 Selects highest valued vectors from the clusters in a round-robin fashion

 Extracts entire segments of the value vectors and generates output video

Chapter 6 Implementation

38

idx=zeros(n,1);

for i=1:n

 [a,idx(i)]=max(U(:,i));

end

clust=zeros(n,k);

final=zeros(l,1);

for j=1:k

 for o=1:n

 if idx(o)==j

 clust(o,j)=dataset(o,1);

 end

 end

end

d.setValue(0.5);

rr=1;

ss=1;

clust=sort(clust,'descend');

temp=1;

while true

 if(ss>l)

 break;

 end

 if (clust(temp,rr)~=0)

 pos=checkValue(clust(temp,rr),n,fd); %find the value in object array

 if(fd(pos).flag==0) %flag to avoid repeatability of frames

 final(ss)=clust(temp,rr);

 fd(pos).flag=1;

 rr=mod(rr,k)+1;

 ss=ss+1;

 temp=1;

 else

6.4 VideoSumFCM

39

 temp=temp+1;

 end;

 else

 temp=temp+1;

 continue;

 end

end

finalpos=zeros(1,l);

for i=1:l

 finalpos(i)=checkValue(final(i),n,fd);

end

sortedpos=sort(finalpos);

%displaying the sorted segments in a window

figure('units','normalized','outerposition',[0 0 1 1],'Name','selected Segments');

 for n = 1:length(sortedpos)

 f= fullfile(workingDir,'snaps', imageNames1{sortedpos(n)}); % it will specify images

names with full path and extension

 our_images = imread(f); % Read images

 subplot(10,10,n), imshow(our_images); % Show all images

 title(strcat('Segment ',num2str(sortedpos(n))));

 end

d.setValue(0.6);

opFolder = 'C:\VideoSumm\snaps2';

 if ~exist(opFolder, 'dir')

 %make directory & execute as indicated in opfolder variable

 mkdir(opFolder);

 end

ttt=1;

for i=1:l

 count=((sortedpos(i)-1)*k*framerate1)+1;

Chapter 6 Implementation

40

 count2=(count+k*framerate1);

 for m = count:count2

 %numFramesWritten11 = numFramesWritten11 + 1;

 currFrame = read(mov, m); %reading individual frames

 opBaseFileName = sprintf('%d.png', ttt);

 opFullFileName = fullfile(opFolder, opBaseFileName);

 imwrite(currFrame, opFullFileName, 'png'); %saving as 'png' file

 ttt=ttt+1;

 end

end

d.setValue(0.9);

%storing snaps2 folder images in imagesNames to create a video

workingDir = 'C:\VideoSumm';

imageNames = dir(fullfile(workingDir,'snaps2','*.png'));

imageNames = {imageNames.name};

%sorting the imagesNames according to numeric names of images

for i = 1:length(imageNames)

out(i) = cellfun(@(x)str2double(regexp(x,'\d*\.\d*','match')),imageNames(i));

end

out=sort(out);

for i = 1:length(imageNames)

 imageNames(i)=cellstr(strcat(num2str(out(i)),'.png'));

end

%assign name to output file

FileName=strcat(FileName,'_summarize.avi');

outputVideo = VideoWriter(fullfile(workingDir,FileName));

outputVideo.FrameRate = framerate1;

open(outputVideo)

for ii = 1:length(imageNames)

 img = imread(fullfile(workingDir,'snaps2',imageNames{ii}));

6.4 VideoSumFCM

41

 writeVideo(outputVideo,img)

end

d.setValue(1);

close(outputVideo)

d.dispose(); msgbox('Processing Finished');

%remove directories

rmdir('C:\VideoSumm\snaps','s'); rmdir('C:\VideoSumm\snaps2','s');

processName='FCM';

analysisOfProcess;

6.5 FrameDef Class

classdef FrameDef

 properties

 name

 hist

 flag

 end

 methods

 function fobg=FrameDef(n,h,f)

 fobg.name=n; fobg.hist=h; fobg.flag=f;

 end

 end

end

 Defines the properties of the representative frame

 Gives name to the representative frame

 Stores the value vector of the frame in hist

 Flag is a Boolean variable which checks if the current frame is included in the

output or not

 Function fobj initialises the values of the class data

Chapter 6 Implementation

42

6.6 checkValue Function

function pos=checkValue(value,n,f)

pos=0;

for i=1:n

 if f(i).hist==value

 pos=i; break;

 end

end

6.7 AnalysisOfProcesses

global FileName mov processName

toc; f = figure('Visible','off');

FileName=strcat('C:\VideoSumm\',FileName);

mov2=VideoReader(FileName);

a=strcat('Processing time :',num2str(toc));

b=strcat('Orginal Length :',num2str(mov.duration));

c=strcat('Summmarized Length :',num2str(mov2.duration));

S=sprintf('Process : %s\n1.%s\n2.%s\n3.%s',processName,a,b,c);

eh = uicontrol('Style','text',...

 'Position',[200 200 200 100],...

 'String',S);

set(f,'Visible','on');

Given the value vector as parameter, it returns the corresponding segment number

Generates the final analysis chart

Chapter VII

Testing

Testing is the investigation conducted to provide stakeholders with information about the

quality of the product or service under test. It provides an objective, independent view of the

software to allow the users to understand and appreciate the risks of software system

implementation.

There are generally four levels of testing: unit testing, integration testing, system testing and

user acceptance testing. They are grouped by where they are added in the software system

development process or by the level of specificity of the test. The hierarchical levels of

testing are shown in Figure 7.1.

 Fig. 7.1 Hierarchical Levels of Testing

Sections 7.1-7.3 describe the various testing levels for the video summarization system.

Chapter 7 Testing

44

7.1 Unit Testing

Unit testing is a testing level in which the smallest parts of an application, called units, are

individually and independently scrutinized for proper operation. The objective of this testing

is to verify the correctness of individual units.

The various important units of the video summarization system are: KFCG clustering unit,

FCM clustering unit and K-Means clustering unit. These units are tested with the help of a

simple calling function. There needs to be three cases for testing these modules:

Case 1: Data set contains values which are spread over the spectrum. In this case, both

closely spaced and far spaced items are included

Case 2: Closely spaced data items

Case 3: Far spaced data items

Based on these cases, the following data sets are taken:

D1 = {1000, 999, 678, 454, 2001, 789, 542, 92, 100, 167, 256, 453, 923, 3, 47, 89, 2459}

D2 = {1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1012, 1013}

D3 = {5, 100, 500, 1000, 2500, 6000, 10000, 12500}

Sections 7.1.1 and 7.1.2 test the units of the video summarization system. All the units are

tested for D1, D2 and D3. Testing of FCM module is not shown explicitly as even it is an in-

built function like K-Means.

7.1.1 KFCG Module

The kfcg function takes the data set, D and the number of iterations, itr as parameters. This

function always forms 2
itr

 clusters. For all the three data sets, we test for three iterations: 1, 2

and 3. For 1 iteration, two clusters should be formed; for 2 iterations, four should be formed

and for 3 iterations, eight should be formed. The clusters should be represented in a matrix

form where the column indicates the cluster and row indicates the data item.

Figures 7.2 -7.4 shows the various testing of kfcg function.

 7.1 Unit Testing

45

Fig. 7.2 KFCG testing for D1

Fig. 7.3 KFCG testing for D2

Chapter 7 Testing

46

 Fig. 7.4. KFCG testing for D3

By comparing the actual outputs and manually computed outputs, it is evident that the kfcg

function is correct.

7.1.2 K-Means Module

MATLAB provides an in-built function for K-Means. This function takes data set and the

number of clusters as input; and returns a row vector containing the cluster indices. A

function is developed to display the data items in clusters. This function returns a 2 x 2

matrix, where the column corresponds to the cluster and row to the data item.

The testing of K-Means is also done on the data sets D1, D2 and D3. It is done only for two

cluster values. The implementation would be correct if obtained output and manual

calculations match.

Figures 7.5-7.7 show the testing of kmeans module for the video summarization system.

 7.1 Unit Testing

47

Fig. 7.5 K-Means testing for D1

Fig. 7.6 K-Means testing for D2

Chapter 7 Testing

48

Fig. 7.7 K-Means testing for D3

From all the three tests, it is evident that K-Means function is also implemented correctly.

7.2 Integration Testing

In integration testing, the entire system is tested as a whole. Figures 7.8-7.15 show the

snapshots of the final integrated system.

 Fig. 7.8 Main Interface of the Video Summarizer

 7.2 Integration Testing

49

Fig. 7.9 Browsing the video

Fig. 7.10 Viewing the original video

Chapter 7 Testing

50

Fig. 7.11 Processing the original video

Fig. 7.12 Representative frames of all segments

Segment1 Segment2 Segment3 Segment4 Segment5

Segment6 Segment7 Segment8 Segment9 Segment10

Segment11 Segment12 Segment13 Segment14 Segment15

Segment16 Segment17 Segment18 Segment19 Segment20

Segment21 Segment22 Segment23 Segment24 Segment25

Segment26 Segment27 Segment28 Segment29 Segment30

Segment31 Segment32 Segment33

 7.2 Integration Testing

51

Fig. 7.13 Representative frames of selected segments

Fig. 7.14 After the completion of processing

Segment1 Segment7 Segment9 Segment10

Segment20 Segment25 Segment28 Segment32

Chapter 7 Testing

52

Fig 7.15 Analysis chart

After integration testing, it is evident that the video summarization system is completely

integrated. It was found that all the modules coordinate with each other efficiently.

7.3 System Testing

In this type of testing, we understand the goals and requirements of the system and then

develop test cases for various test scenarios and use cases.

For the video summarization system, processing and accuracy are the most important non-

functional requirements of the user. Thus, the system testing for the video summarizer would

aim to optimize these requirements.

In the video summarization system, the number of output segments and the number of

clusters for each technique differs. Thus, the different combinations of these two variables

would be considered as the different scenarios for test cases. The scenario giving the

optimum results for each technique would be chosen.

 7.3 System testing

53

Sections 7.3.1-7.3.3 perform the testing for K-Means, KFCG and FCM clustering

respectively. The processing environment for all the three sections is given in Figure 7.16

Fig. 7.16 Processing Environment for System Testing

The specification of the input video for all the three sections is as given:

o Video: v2.mp4

o Duration: 4:45 min

o FPS: 25

o Size: 24.2MB

o Converted to „.avi‟

7.3.1 K-Means Test Scenarios

Three test cases are considered. Each case corresponds to the number of output segments.

Each case again is divided into three sub-cases for 6, 8 and 10 clusters. Figure 7.17 shows all

the test case scenarios.

 Fig. 7.17 Test case scenarios for K-Means clustering technique

Chapter 7 Testing

54

The analysis for the above test case scenarios is as follows:

 For the technique with 6 output segments, the one with 6 clusters was found to be the

fastest. But the 8 cluster method had very good accuracy as compared to both 6 and

10 cluster methods. Thus, it can be concluded that 8 is the optimum number of

clusters for 6 output segments

 For the technique with 8 output segments, the one with 6 clusters was found to be the

fastest. Even in this case, 8 clusters provided a great accuracy

 The observation for 10 output segments is similar to that of other cases

 Although 6 output segments was the fastest, there exists a speed v/s accuracy trade-

off. Due to this, the 8 cluster-8 segment combination is finalised

7.3.2 KFCG Test Scenarios

The test case scenario for KFCG includes using different number of output segments and

different number of iterations. Figure 7.18 gives the complete overview of the test cases.

Fig. 7.18 Test case scenarios for KFCG clustering technique

 7.3 System testing

55

The analysis for the test scenarios of KFCG clustering technique is as follows:

 For case 1, the one with 3 iterations was the fastest; but the one with 5 was the most

accurate. As a result of which, we choose 4 iterations in order to compensate for the

trade-off

 For case 2, the one with 3 iterations was both fast and accurate

 For case 3, the one with 4 iterations was the most accurate

 Keeping in mind all the various aspects, it can be inferred that the KFCG clustering

algorithm with 7 output segments and 3 iterations is the best

7.3.3 FCM test Scenarios

FCM has a test scenario similar to K-Means. Figure 7.19 gives the various test scenarios for

FCM clustering.

Fig. 7.19 Test case scenarios for FCM clustering technique

Chapter 7 Testing

56

The analysis for FCM clustering is as follows:

 For all the three cases, the one with 6 clusters is the fastest and the one with 10

clusters is the most accurate

 So as to compensate for the trade-off of speed-accuracy, we choose 8 output segments

and 8 clusters for the FCM technique

From the system testing, it is evident that all the non-functional requirements are aptly met by

the video summarization system.

Chapter VIII

Results and Analysis

There are different types of videos in real life: some have lots of motion, some with lots of

redundancy, some with a story, and so on. For proper analysis, five different categories of

videos are taken. These categories are:

1. Animations

Documentaries may or may not have a story. But all animations do have a story. The main

motive of summarizing such videos is to keep the original story intact in the summarized

video.

2. Surveillance

It is also known as CCTV footages. Such videos are highly redundant, yet may contain

important aspects like theft. Such videos when summarized must be extremely small, but still

contain the highlighted aspect.

3. Documentaries

Documentaries are not as redundant as surveillance videos, but many a times they turn out to

be boring. Unlike surveillance videos, they come along with audio. Audio is not considered

while summarizing them.

4. Sports

Sports videos contain lots of motion. But having lots of motion does not mean that they have

lots of meaningful content. While summarizing such videos, we will have to make sure that

continuity is not affected.

5. Day-to-Day

They are the highly heterogeneous of the lot. Their characteristics are highly unpredictable.

The only parameter which is considered for them is the processing time. Parents recording

the play time with kids can be an example for the same

Chapter 8 Results and Analysis

58

The minimum length of video was 10 seconds whereas the maximum video length was 11

minutes. About 25 videos were tested and 10 of them were analysed.

8.1 Analysis Based on Processing Time

Table 8.1 Observations

Category Video Name
Video

Length

Processing Time

K-Means KFCG FCM

Animations

Ben Franklin Effect 1:05 1:01 1:10 1:00

Dino Killer 1:05 0:50 0:46 0:50

Minecraft Eating 1:05 0:34 0:25 0:26

Boring 1:48 3:06 3:00 2:55

Flower of life 11:05 8:01 8:42 8:30

Surveillance
Robbery 1:43 1:32 1:15 1:16

Animal 5:27 5:11 6:13 6:46

Documentaries
Why sitting is bad for you 5:04 4:54 4:50 5:00

What makes a hero 4:33 2:00 1:48 1:57

Sports
V1 0:30 0:35 0:36 0:36

Long jump 3:34 3:20 3:12 3:02

Day-to-Day

Baby in park 3:00 2:20 2:15 2:05

Kids at zoo 5:45 3:45 3:20 3:15

Pre-School Event 1:40 1:35 1:32 1:32

30% Compression Raton was achieved for all these videos. Table 8.1 gives the processing

time taken for 10 videos in minutes.

Table 8.2 Ratio of Processing Time and Video Length

 K-Means KFCG FCM

Animations 0.936 0.924 0.896

Surveillance 0.922 0.935 0.989

Documentaries 0.703 0.675 0.707

Sports 1.051 1.048 1.025

Day-to-Day 0.793 0.749 0.726

Table 8.2 gives the average ratios of processing time and video lengths for all five categories.

Figure 8.1 was computed based on Table 8.2

 8.1 Analysis based on processing time

59

Fig. 8.1 Analysis graph for the video summarization system based on processing time

The time taken by all the clustering processes is nearly the same. K-Means takes 0.881 times

the original length to process; KFCG takes 0.8662 times the original length to process; and

FCM takes 0.8686 times the original video length to process. For most of the videos, KFCG

was found to be the fastest.

K-Means is the slowest technique. The processing time is at least 0.8 times the original

length. KFCG is faster than K-Means. FCM is also as fast as KFCG.

K-Means is found to be very effective for videos of shorter length. For videos with lengths

less than 2 minutes, K-Means is the fastest. KFCG is the fastest for moderate length videos.

FCM is the fastest for videos with large lengths.

0

0.2

0.4

0.6

0.8

1

1.2
R

a
ti

o
 o

f
p

ro
c
e
ss

in
g

 t
im

e
 a

n
d

 v
id

eo
 l

e
n

g
th

Categories of Videos

K-Means

KFCG

FCM

Chapter 8 Results and Analysis

60

8.2 Analysis based on Accuracy

Let the number of frames detected correctly be fc. Let the total number of frames in the initial

video be ft. Then, the accuracy, A in Equation 5.

 (5)

The video is first manually analysed. User manually checks the video and decides the frames

which he feels must be a part of the output. These frames are then compared with the actual

output frames.

Accuracy is analysed only for videos with some highlighted aspects or stories. CCTV

summarization is accurate if the output summary consists of the highlighted aspects.

Documentaries are summarized accurately if the order of important events is maintained.

Animations are accurate if the stories are kept intact.

The accuracy for all the three techniques was nearly the same around 90%. CCTV videos

were accurate in all the cases. Animations were accurately summarized using FCM. KFCG

produced few deviations while summarizing animations. Documentaries were best

summarized using KFCG. K-Means performed moderately in all the three cases.

Chapter IX

Conclusion and Future Work

The video generation in today‟s era goes to enormous level. But watching such huge

sequences of videos for understanding the core of it, is very time consuming. So this project

work of video summarization helps in generating the summary videos faster. Summaries

were generated using the clustering methods- Kmeans, KFCG and FCM. The speeds and

accuracy of various clustering methods were compared. KFCG was found out to be the

fastest and K-Means was the most accurate.

K-Means was faster for smaller videos as it takes the centroid faster. KFCG was slow as for

small videos as it always have to construct a code book. FCM takes lesser time for bigger

videos as it uses the concept of membership functions which can be computed faster

Accuracy in K-Means is higher as it is more or less similar to manual clustering. Accuracy of

KFCG and FCM remains the same.

The current version, summarizes the video without taking into consideration the audio aspect

of the movie. Future work would be summarizing the video that also includes audio.

The summarization speed can be increased further by making use of the GPU (Graphical

Processing Unit). As a GPU consists of 100s of cores, which is far more than the cores

present in a CPU, the expected result should be produced in far lesser time period. For

specific applications, like video surveillance system, we can design a system which consists

of a GPU. It would rely on the GPU only for its computations.

In the future, CBIR techniques could also be added for retrieving specific parts of the video.

Clustering techniques are not that efficient as at every juncture of time only a selected

number of previous frames are considered and not all. Dictionary can be used to overcome

this drawback.

1. Segment

Given an unstructured video, the system first starts with temporal segmentation i.e. breaking

original video into segments. This is a bottom up approach as the video segments are formed

based on similarity approach rather than boundary detection. Short temporal length of

segments ensures consistency within each segment. Segments act as basic logical units in this

system; they are analogous to key frames in static summarization methods.

2. Value Vectors

Every frame is represented by a feature vector. This feature vector is known as value vector.

This is so because it computes the histogram values at each pixel.

3. Representative Frame

Every segment is represented by a single frame. This frame is known as the representative

frame.

4. Clustering

Clustering is the task of grouping a set of objects in such a way that objects in the same group

are more similar to each other than to those in other groups.

5. Effective Time

Effective time is the sum total of processing time and video viewing time

APPENDIX-A TERMINOLOGIES

SUMMARIZATION ALGORITHM

i. Split the input file into time segments of k seconds

ii. Take the first frame of each segment. Let this frame be representative of the segment.

We assign it x0...xn

iii. Compute the histograms from x0...xn and assign it to y0...yn

iv. Cluster the histograms y0...yn into k groups

v. Iterate through the k groups in round robin fashion and select a segment randomly

from a cluster, add it to list l until the number of desired segments are chosen.

vi. Join list l of segments together to generate a video summary

K-MEANS CLUSTERING ALGORITHM

i. Initialize the center of the clusters

ii. Attribute the closest cluster to each data point

iii. Set the position of each cluster to the mean of all data points belonging to that cluster

iv. Repeat steps 2-3 until convergence

KFCG CLUSTERING ALGORITHM

i. Compute the centroid C of the vector set

ii. Add and subtract error vector to generate the vectors C1 and C2 as given in Equation

B.1

APPENDIX-B ALGORITHMS

Appendix B Algorithms

 ()

 ()

(B.1)

iii. Compute distance between all training vectors belonging to this cluster and the

vectors C1 and C2 and split the cluster into two based on the proximity

iv. Compute the centroid for the clusters obtained in step 3

v. Repeat steps 1-4 until required number of iterations are done

FUZZY C-MEANS CLUSTERING ALGORITHM

X = {x1, x2, x3 ..., xn}: Set of data points

V = {v1, v2, v3 ..., vc}: Set of centres

i. Randomly select c cluster centers

ii. Calculate the fuzzy membership μij using Equation B.2

 ∑(⁄)(⁄)

⁄

 (B.2)

iii. Compute the fuzzy centers vj using Equation B.3

∑

∑

 (B.3)

iv. Repeat steps 2-3 until the termination criterion is satisfied: J < β. The objective

function J is computed using Equation B.4

 () ∑∑

 (B.4)

(4)

Bibliography

[1] Marat Fayzullin et. Al “The CPR Model for Summarizing Video” Multimedia tools and

Applications June 2005

[2] RaviKansagara et. Al “A Study on Video Summarization Techniques” IJIRCCE Feb 2014

[3] Dirfaux F. “Key Frame Selection to represent a video” IEEE 2000

[4] Sabbar W et. Al “Video Summarization using shot segmentation and local motion

estimation” INTECH Sept 2012

[5] Naveeb Ezaz “Adaptive key frame extraction for video summarization using aggregation

mechanism” Elsevier 2012

[6] R.M. Jiang, A.H. Sadka, D. Crooks; “Advances in video summarization and skimming”

Springer 2009

[7] Samy Bengio et. Al “Group Sparse Coding” NIPS 2009

[8] Piotr Dollar et. Al “Behaviour Recognition via Sparse Spatio-Temporal Features” VS-

PETS 2005

[9] I. Lapdev “On space time interest points” IJCV 2005

[10] Navneet Dallal; Bill Triggs “Histogram of Oriented Gradient for Object Detection”

CVPR 2009

[11] Rizwan Choudhary “Histogram of Oriented Optical Flow and Binet Cauchy Kernels on

Non Linear Dynamic Systems for the Recognition of Human Actions” CVPR 2010

[12] Bin Zhao; Eric P. King “Quasi Real Time Summarization for Consumer Videos” CVPR

June 2014

[13] Tommy Chheng “Video Summarization using Clustering” Department of Computer

Science, University of California, Citeseer 2007

[14] Pavel Berkhin “Survey of Clustering Data Mining Techniques” pp. 25-71, 2002

 Bibliography

[15] C C Aggarwal; C K Reddy “Data Clustering: Algorithms and Applications” CRC Press,

Chapman & Hall Book

[16] KS Chuang; HL TZeng; S Chen “Fuzzy C-Means clustering with spatial information for

image segmentation” Elsevier 2006

[17] H Frigui; R Krishnapuram “A robust competitive clustering algorithm with applications

in computer vision” IEEE 1999

[18] Sony A; Ajith K; Thomas K; Thomas T “Video Summarization by clustering using

Euclidean distance” IEEE July 2011

[19] Clustering Methods

Last modified on Feb 5, 2006 [Online]

Available at: http://users.ics.aalto.fi/sami/thesis/node9.html

[20] A tutorial on clustering algorithms: K-Means Clustering

Last modified on September 18, 2003 [Online]

Available at: http://home.deib.polimi.it/matteucc/Clustering/tutorial_html/kmeans.html

[21] Data clustering algorithms: Fuzzy c-means clustering algorithm

Last modified on April 21, 2015 [Online]

Available at: https://sites.google.com/site/dataclusteringalgorithms/fuzzy-c-means-clustering-

algorithm

[22] Dr. H. B Kekre; Tanuja K. Sarode “New Clustering Algorithm for Vector Quantization

using rotation of error vector” IJCSIS, vol 7, no. 3, 2010

